
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

HUMAN INTERACTION WITHIN
A VIRTUAL ENVIRONMENT

FOR SHIPBOARD TRAINING

by

James E. O'Byrne

September 1995

Thesis Advisor:
Thesis Co-Advisor:

Michael J. Zyda
John S. Falby

Approved for public release; distribution is unlimited.

19960220 045 -cqOBU^
■«fffpTi-G 0S&>

DISCLAIME!

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH DO NOT

REPRODUCE LEGIBLY ON BLACK

AND WHITE MICROFICHE.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE
September 1995

13. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

HUMAN INTERACTION WITHIN A VIRTUAL ENVIRONMENT
FOR SHIPBOARD TRAINING

6. AUTHOR(S)

O'Byrne, James Edward

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position
of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVATLABnJTY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The problem addressed by this research is that the existing Damage Control Virtual Environment Trainer (DC
VET) simulator is deficient in the capability of presenting information about the environment. First, it lacks
facilities for explaining the functions of engineroom equipment such as; boilers, pumps, gauges, switches and
valves. Second, it lacks a facility to instruct users by a "Virtual Instructor/Guide".

The approach taken was to refine the DC VET simulator and increase its immersive interactive shipboard
training capability. This was accomplished using the Jack Motion Library to create articulated human-form entities.
Next, scripted actions of a human-form instructor/guide, combined with audio feedback in the form of sound effects
and digitized speech via hyper-text links, instruct the novice user.

The result of this thesis was the implementation of a virtual ship model where networked users are represented
as articulated humans who can see and hear engineering casualties. Actions of an instructor/guide may be scripted
by a non-programmer. Using scripts DC VET has the ability to teach a novice the basic functions of boilers, pumps,
gauges, switches and valves. Users can also interact with other networked users and discover functions of boilers
and pumps in the engineroom by tagging the equipment. It is possible for the novice sailor to learn basic functions
of engineering equipment before arriving at his ship.

14. SUBJECT TERMS

Walkthrough, Virtual Environment, Training, Navy, Network, Simulation, 3-D
Modeling, Jack Motion Library

15. NUMBER OF PAGES

106
16. PRICE CODE

17. SECURITY CLASSDFICATION
OF REPORT

Unclassified

18. SECURITY CLASSD7ICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSDTCATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

HUMAN INTERACTION WITHIN
A VIRTUAL ENVIRONMENT
FOR SHIPBOARD TRAINING

James Edward O'Byrne
Lieutenant, United States Navy

B.S., State University of New York, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

Author:

Approved by:

September 1995

ames E. O'Byrne

Michael J. Zyda,\£hjbsis Advisor

&Z.
/John S. Falby, Co-Thesis Adyijsor

Ted Lewis, Chairman
Department of Computer Science

in

I

IV

ABSTRACT

The problem addressed by this research is that the existing Damage Control Virtual

Environment Trainer (DC VET) simulator is deficient in the capability of presenting

information about the environment. First, it lacks facilities for explaining the functions of

engineroom equipment such as; boilers, pumps, gauges, switches and valves. Second, it

lacks a facility to instruct users by a "Virtual Instructor/Guide".

The approach taken was to refine the DC VET simulator and increase its immersive

interactive shipboard training capability. This was accomplished using the Jack Motion

Library to create articulated human-form entities. Next, scripted actions of a human-form

instructor/guide, combined with audio feedback in the form of sound effects and digitized

speech via hyper-text links, instruct the novice user.

The result of this thesis was the implementation of a virtual ship model where

networked users are represented as articulated humans who can see and hear engineering

casualties. Actions of an instructor/guide may be scripted by a non-programmer. Using

scripts DC VET has the ability to teach a novice the basic functions of boilers, pumps, t

gauges, switches and valves. Users can also interact with other networked users and

discover functions of boilers and pumps in the engineroom by tagging the equipment. It

is possible for the novice sailor to learn basic functions of engineering equipment before

arriving at his ship.

/
i

\

L

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BACKGROUND 1
B. MOTIVATION 2

1. Navy's Training 2
2. Virtual Environments 3

C. OBJECTIVE 4
D. CHAPTER SUMMARY 5

II. OVERVIEW 7
A. PREVIOUS WORK 7
B. HARDWARE 9
C. SOFTWARE 10

1. Rendering Software 10
2. Modeling Software 1
3. Operating System 1
4. Software Libraries 1

a. Jack® Motion Library 1
b. Distributed Interactive Simulation (DIS) Protocol 1

D. DESIGN CONSIDERATIONS 12
1. Real Time Rendering 12

a. Performance 12
b. Immersion 13
c. Database Model 14
d. Training 14

E. CONSTRUCTING A VIRTUAL SHIP ENVIRONMENT 15
IE. JACK® MOTION LIBRARY 19

A. SOFTWARE LIBRARY 20
B. FUNCTIONALITY 20
C. MOTION 25

IV. LEARNING ENVIRONMENTS 27
A. TRAINING 27

1. Methods of Learning 27
2. Lesson Designing 30

B. CORPORATE TRAINING 32
C. SUMMARY 33

V. NETWORKED ENVIRONMENT 35
A. DIS COMMUNICATION PROTOCOL 35
B. NETWORKING SHORT FALLS 39

VI. COLLISION DETECTION 43
A. INTERSECTION TESTING 43

1. Deck and Object Collisions 43
2. Autonomous Agents 47

Vll

/

\

B. PICKING 48
VII. USER INTERFACE 51

A. INTERFACE CONTROLS AND DISPLAYS 51
B. SOUNDS AND EFFECTS 55
C. SUMMARY 57

VIE. CONCLUSION > 59
A. RESULTS 59
B. RECOMMENDATIONS FOR FUTURE WORK 59

1. Create a Naval Ship Model From Actual Ship Data 59
2. Jack® Motion Library 60
3. Networking Larger Virtual Environments 60
4. Improved Interface and Input Devices 61
5. Dynamic Casualty Control Scenarios ..61
6. Merge into NPSNET 61
7. Increased Data Display 62
8. Testing and Evaluation of Virtual Environment Trainers 62
9. More Realistic and Efficient Collision Detection 63

C. FINAL REMARKS 63
APPENDK A. USER'S GUIDE 65

A. STARTING DC VET 65
B. PROGRAM TERMINATION 66
C. SCREEN LAYOUT 66

1. Deck Overview 67
2. Pop-Up Data Display Window 67
3. Graphical User Interface 69

D. OPERATION 69
1. Mouse Operations 69

a. Objects Which Move 70
b. Objects Which Can Be Manipulated 71

2. Graphical User Interface (GUI) 71
a. Quit Button 71
b. User's Position Display 72
c. Traversal Mode Selection 72
d. Height of Eye Control 72
e. Path Planning Selection 72
f. Reset Button 73
g. Toggle GUI Button 73
h. Translation Selection 73

3. Keyboard Operations 73
4. Head-mounted Display Operation 74

E. CASUALTY SCENARIOS 75
1. Fire Casualty Sequence 75
2. Steam Leak Casualty 76

Vlll

F. TRAINING LESSONS 76
1. Operating Lessons 76
2. Creating Scripted Training Lessons 77

G. SOUND SERVER 80
1. Staring the Sound Server Program 80
2. Networking Sounds 81
3. Local Sound Capability 81
4. Features 81
5. Sound Files 82

LIST OF REFERENCES 85
INITIAL DISTRIBUTION LIST 89

IX

LIST OF FIGURES

1: Partial Ship Database Hierarchy 10
2: Spatially Partitioned Database Organization 16
3: Previous Graphical Representation of a Sailor 19
4: Jack As a Sailor 21
5: Jack Articulated Arm Joint Composition 22
6: Jack's Hand Motion 24
7: Walking Motion Path 26
8: Opposite Direction Walking Motion Path 26
9: Jack Discussing a Pump's Operation 28
10: Jack Illustrating Fire Fighting Methods 29
11: Jack Closing a Steam Valve 29
12: DIS Maximum Latency Specification 40
13: Networked Jack Entities 41
14: Collision Detection Scheme 45
15: Modified Collision Detection Scheme 47
16: GUI Controls With View of Engineroom 52
A-l: Monitor Display 67
A-2: DC VET Console Display 68
A-3: Graphical User Interface 72
A-4: Example "scriptData.dat" File Contents 80
A-5: Example "sounds.dat" File Contents 83

XI

Xll

LIST OF TABLES

1: Jack Figure Characteristics 20
2: Autonomous Jack Instructions 31
3: Mistakes Observed in The Test Groups 32
4: Various NPSNET PDU Types 36
5: Entity State PDU 37
6: Mouse Button Interface and Functions 53
7: Keyboard Interface and Functions 54
A-l: Command Line Options 65
A-2: Mouse Button Interface and Functions 71
A-3: Keyboard Interface and Functions 74
A-4: Script Data File Format 78
A-5: Autonomous Jack Instructions 79

Xlll

XIV

ACKNOWLEDGMENTS

We wish to express our thanks to Naval Personnel Research and Development

Center, Naval Sea Systems and Advanced Marine Vehicles for their assistance with the

project.

This work would have not been possible without the support of our research spon-

sors: ARPA, USA ARL, DMSO, USA STRICOM, and USA TRAC.

XV

I. INTRODUCTION

A. BACKGROUND

The final product application developed from this thesis is called the Damage

Control Virtual Environment Trainer or DC VET. DC VET is the implementation of an

interactive networked real-time virtual environment for moving about an entire ship for

training. Other related work has been architectural walkthroughs of large buildings and

sub-sections of ship models [AIRE90][BROOK92][FUNK94]. However, more research

needs to be conducted to solve the inherent problems involved with creating a world where

humans can react.

Walkthrough environments are much different from other kinds of virtual worlds

since the view that is seen in the world is limited in sight. In these virtual worlds, aircraft

and ground vehicles move about a large terrain at varying speeds, some being extremely

fast. Objects like trees, mountains, buildings, and other vehicles can be seen for miles as

long as they are in the line-of-sight. In a flight simulation, the designer is not as concerned

about flying through objects that are attached to the ground. However, with walkthrough

environments one needs to avoid walking through walls, furniture and the like. A walk-

through's view is typically much less than 100 feet and within that small area there are

many different objects to view. A model of a house or ship can become quite extensive.

However, efficient ways of traversing through the virtual world in real-time and in a real-

istic manner must be found. Not all of the same model construction and rendering tech-

niques apply to a walkthrough environment as do for a battle simulation on a desert terrain.

The DC VET is designed to enable the novice sailor to acquire ship familiarization

by allowing him to move about the ship model in a realistic fashion. By visiting key points

of interest within the ship model, the sailor can associate the virtual world later with the real

world. The sailor can also review fire-fighting techniques when fighting a simulated fire

in the engineroom compartment. The virtual environment is designed to instruct the sailor

and allow him to review his skills. Team training is also an important part of Damage

Control Training. With the use of Distributed Interactive Simulation, multiple people

participate in team training over an Internet connection [LOCK94]. One can participate

actively or be a silent observer and watch others react in the simulation. The limit to the

number of players is based on the limitation of the participant's workstation.

The navy has used simulators and mock-up trainers for decades to train naval per-

sonnel. The Damage Control Virtual Environment Trainer was conceived to be the next

device to complement the navy's existing training. It can help to reduce training costs and

also train people in areas that could not have been done before by eliminating dangers to

personnel and equipment.

B. MOTIVATION

1. Navy's Training

Naval training of fleet sailors has traditionally started with classroom instruction,

followed by simulators and hands on training once aboard ship. Classroom instruction can

have many styles ranging from classroom training of a group, to training with a video

presentation. Often after a level of instruction is completed, there is mock-up training in a

controlled environment. It is this training that virtual environments can complement and

enhance.

Most trainers are man-power intensive and require many dollars to maintain. It

becomes too expensive, and there is often not enough time, to train sailors using these train-

ers. So the sailor receives a limited feeling of what the real task is like and does not neces-

sarily maximize skills that could have been learned before reaching the fleet. Virtual reality

can bridge that deficiency before the sailor reaches the fleet. It can also be used to continue

training after reporting aboard ship. A sailor can receive training in the virtual environment

and learn the necessary procedures to complete a task in spite of never really being there.

He can then go to a facility trainer with those learned tasks and emphasize what he can

physically only do in a mock-up trainer. Attention shifts from learning procedures in an

unfamiliar environment (trainer) to accomplishing tasks in a reasonable amount of time in

a familiar setting.

The second point to be made about virtual reality is that it can assist naval training

with shipboard hands-on training. A virtual environment can assist sailors in becoming

familiar and comfortable with the operation of equipment. We can build a Virtual Reality

Laboratory onboard where sailors can train with various equipment. Procedures for PMS

(Planned Maintenance System) that are not accomplished often can be reviewed. A tech-

nician can practice taking apart a very expensive weapons system for maintenance at sea,

even if the physical maintenance can only be accomplished in-port. The Virtual Reality

Laboratory augments his technical manuals and other references providing an interactive

visualization of the task at hand as if working on the actual equipment itself. In theory this

could reduce damage to a system caused by inexperienced technicians. Today many

companies are looking at virtual reality to assist in these tasks [ADAM95].

2. Virtual Environments

The navy is not the first to consider virtual environments as a means of training

personnel. Many companies are looking at virtual reality to train company personnel. With

virtual reality, companies can save money and time and also train people in areas they could

not consider before. As technology has progressed in the past two decades, researchers

have been developing many ways to immerse a person into the virtual world. Companies

like Motorola have used virtual reality in their training. They have not only found that they

can save money, but have also increased worker's skills [ADAM95]. The three groups in

Motorola's evaluation were traditional laboratory instruction, virtual reality with a comput-

er monitor and the other with a Head Mounted Display (HMD). Motorola observed that

the virtual reality group using a HMD reduced operator error rates drastically compared to

the other groups which used a monitor for virtual reality and the traditional instruction. The

reason given by the operators who performed better was that they felt a sense of presence

in the virtual environment. They remembered what happened in the world simply because

they experienced it.

C. OBJECTIVE

The objective of this thesis is to develop a real-time networked interactive virtual

environment for training of shipboard naval personnel, particularly Damage Control. The

virtual environment represents a real ship, as practical as possible, and tailored to simulate

real life casualties. In this virtual environment people can gain familiarization and learn

skills which will enhance current training methods. In the construction of the virtual envi-

ronment fidelity, realistic interactions and level of detail have been balanced against frame

rate while giving the user a feeling of immersion in the world. Experience is gained from

operating and interacting within the virtual environment.

The continuing research accomplished here has taken the current virtual environ-

ment and enhanced many of its features. Realism has been enhanced by increasing the

interaction and responses perceived by the user. This includes articulation of a human

model and the ability to manipulate objects in the world. Sounds are also used to assist in

perceiving interactions. Refinements to the Collision Detection algorithm employed are

implemented. All modifications must achieve enough realism to make the user feel the

virtual environment.

This thesis focuses on Damage Control Training using a virtual environment to

augment reality. The virtual environment is designed to train a fire team or even the

Damage Control Assistant (DCA) in damage control. For example, a virtual environment

can assist the DCA who needs to prepare for a mass conflagration. The DCA must design

a scenario and carry it out. This can take many hours of planning and an incredible amount

of ship's force man hours while training key personnel. Since practicing procedures and

tactics are required, a networked virtual environment with just key players can accomplish

this. Training can start with a dozen people participating so the whole ship does not need

to be involved. They can keep training while not interfering with other shipboard activities

until the training concepts become second nature. When all the key players are well versed

then an all hands training scenario with the ship's compliment can be implemented. If the

reaction time of key players has improved, then the emphasis of training on more rudimen-

tary skills can be done during the all hands training. The use of a virtual environment in

this example can be applied to many other training evolutions. The objective is to reduce

overall training time and maximize the use of limited personnel resources. If this example

has eliminated just one mass conflagration drills, then virtual reality has saved hundreds of

man hours.

D. CHAPTER SUMMARY

The remainder of the thesis is broken down as follows:

• Chapter II presents an overview of background information about the current
computer system used to design the walkthrough. It includes a discussion of the
hardware and software used. This chapter also provides an overview of the
design considerations (and trade-offs) employed in building the ship virtual
environment trainer.

• Chapter HI discusses the integration of the Jack® Motion Library software from
University of Pennsylvania.

• Chapter IV describes embedded training aids and scripted demonstration for
training.

• Chapter V discusses how users at different workstations are networked together
to interact in the same virtual environment.

• Chapter VI discusses in detail Collision Detection and object manipulation.

• Chapter VII introduces the user interface used in the virtual environment and
describes how sounds are used to enhance the realism of the simulation.

• Chapter VIII provides a final discussion of the results of this thesis and describes
follow-on work to be accomplished.

II. OVERVIEW

A. PREVIOUS WORK

Virtual worlds were devised to bridge the real world and graphical representations

of the world. There have been other walkthroughs of architectural models, mostly by uni-

versity research groups working on fundamental efforts to minimize polygon flow to the

graphics pipeline. This research in computer modeling of walkthroughs has been accom-

plished by Airey and Brooks at the University of North Carolina (UNC) [AIRE90]

[BR0092] and Funkhouser, Sequin, Khorramabadi and Teller at the University of Califor-

nia Berkeley (UC Berkeley) [FUNK94]. UNC currently has a model of Professor Brooks'

house as a test bed which is comprised of 367,000 radiositized triangles. Recent work has

been aimed at improving the Potentially Visible Set (PVS) geometry by employing a sim-

pler less exact method which is determined dynamically at render time. This idea replaces

the exact PVS algorithm which is performed at preprocessing time. The new concept em-

ploys bounding boxes instead of general convex regions. This renders each object once for

every portal sequence, but allows the primitive-level clipping scheme to visit objects more

than once, yet have no portion of the primitive rendered more than once [LUEB95].

UC Berkeley has created a practical approach to the manipulation of objects in a

virtual environment. Berkeley's project, called "WALKEDIT", is a model of Berkeley

Soda Hall which allows the user to manipulate 3D objects using a 2D I/O device. Objects

which are manipulated are intelligently relocated based on the associated objects around

them. It provides automatic implicit grouping which allows, for example, the user to move

a book from the floor to a stack of books on a desk rather intuitively. The designers of

"WALKEDIT" were able to design a cluttered office with furniture, books, cups, etc. in

less than ten minutes [BUK095].

The Naval Research Laboratory (NRL) in Washington D.C. is also currently en-

gaged in using virtual environments for the study of damage control training. NRL's model

is the engine room of the Ex-USS Shadwell. The model consists of about 500 polygons.

Immersion into the world is by means of a Head Mounted Display (HMD) or Binocular

Omni-Oriented Monitor (BOOM), and mouse for speed input. Environmental effects like

smoke and fire are added for realism during the training [NRL95].

Walkthrough environments, like the two mentioned above, still lack interaction be-

tween the user and other human entities. The need for representing other human figures

and how they articulate is important for training people. The University of Pennsylvania

has done excellent research in the development of human agents within the virtual environ-

ment [GRAN94]. They have created a Jack® Motion Library which is currently used with

the Naval Postgraduate School's Networked Virtual World (NPSNET) [MACE95].

Developing graphical systems that represent true reality in real time is not achiev-

able today because of the enormous number of objects that have to be created in the com-

puter environment. Photographic resolution along with real time interaction is off in the

future. For now we can create virtual worlds that represent reality. It is much the same

with animation. To provide a real time drawing of a world we need a minimum refresh rate

of 12 frames/second much like the old silent movies [BR0092]. This speed is adequate

for immersion into the virtual environment but our goal is 15 frames per second. The mod-

eling of the real world is represented in the virtual world by the use of polygons. It has been

estimated that visual reality as envisioned in a computer graphic image consists of eighty

million polygons per picture [CATM84]. However, current systems can only render about

one million polygons per second. When rendering 15 frames per second, a real world im-

age would take about 1200 million polygons per second. As the numbers indicate, graph-

ical machines are not close to representing real worlds soon.

This thesis expands upon the recent shipboard walkthrough trainer work accom-

plished at the Naval Postgraduate School (NPS). The basic design of DC VET was devel-

oped by Tony King and Perry McDowell as their thesis [KXNG95]. They used an existing

model of a proposed roll-on/roll-off commercial ship, the Antares, which was built for Na-

val Sea Systems (NAVSEA) by Advanced Marine Vehicles. The base model was created

using MultiGen modeling software. The interior sections of the ship model were remodeled

to represent a naval vessel. This ship model was loaded into a Silicon Graphics (SGI) IRIS

Performer based application. DC VET loads the model and allows the user to move about

the ship. During the design, concepts of Potentially Visible Sets (PVS) and Level of Detail

(LOD) were utilized to reduce the size of the model to be rendered before reaching the

graphics pipe line [FUNK94]. To add realism into the ship model, a Collision Detection

algorithm that uses Performer's line segments determines if the person has collided with

any other objects in the virtual world.

The existing ship model of the Antares is used as the training platform in which the

user can associate embedded world objects to immerse himself into the environment. The

addition of sounds is used to enhance the immersion into the virtual environment. The in-

troduction of an articulated human called Jack is employed to represent players in the net-

worked virtual environment [GRAN94A]. This allows users to interact in an environment

with each other in a manner similar to that in the real world.

B. HARDWARE

The system currently used to construct this trainer is the Silicon Graphics Onyx Re-

ality Engine 2 (RE2). The RE2 incorporates a multiprocessing architecture, PowerPath2,

to combine up to 24 parallel processors based upon the MIPS R4400 RISC CPU, which op-

erates at 150 MHz. The I/O bandwidth is rated at 1.2 GB/second to and from memory, with

support for the VME64 64-bit bus, operating at 50 MB/second. The RE2 is rated at 2M flat

triangles/second and 900K textured pixels [NATI94]. NPS's version of the Onyx RE2 is a

four processor 128 megabyte machine. The Silicon Graphics Power Series Reality Engine

I is also used. This graphics machine has four R3000 40 MHz processors, a single RM4

board and an integral SCSI controller. It is rated at 1.1M flat triangles/second and 160M

textured pixels. The Power Series Reality Engine I has been able to run DC VET at frame

rates of 15 frames/second on average. The Onyx RE2 DC VET frame rate is 20 frames/

second on average. The frame rate may decrease as the complexity of the project grows.

However, to ensure real-time interaction, complexity is limited to maintain a minimum

frame rate of 15 frames/second. The intent is to develop a relatively low cost system for

naval ships and shore facilities. Silicon Graphics has released a new system, called Indigo2

Impact, which has the capability of the Power Series Reality Engine I for about $50,000

[ERTE95]. This new system would be ideal for shipboard deployment simply because of

its real-time graphics capabilities, low material support and overall cost.

C. SOFTWARE

1. Rendering Software

To support the objective of real time graphics simulation, IRIS Performer was cho-

sen to create the rendering software. Performer is an Application Programming Interface

(API) whose architecture is designed to support high performance, multi-processed graph-

ics applications; especially, visual simulations, virtual reality and real-time three-dimen-

sional graphics. Performer is based upon a hierarchical database, an example of which is

shown in Figure 1. Performer culls the database so that only PVS geometry is sent to the

Figure 1: Partial Ship Database Hierarchy

graphics pipeline. It also provides fast intersection testing through database traversals, and

performs LOD management of objects. The most significant feature about Performer is

10

that the cull, draw and application processes can run in parallel, greatly increasing the speed

of the program [ROHL94]. Performer is capable of reading 14 different types of databases

into an application.

2. Modeling Software

The current ship model for DC VET was designed using the MultiGen Modeling

Tool produced by Software Systems. MultiGen is a comprehensive format that can repre-

sent nearly all of IRIS Performer's advanced concepts, including object hierarchy, instanc-

ing, LOD, light point specification, texture mapping and material property specification.

3. Operating System

The current operating system used in the Naval Postgraduate School Graphics and

Video Laboratory is Silicon Graphics IRIX 5.3. All new developments and evaluation of

the shipboard walkthrough environment is performed using it.

4. Software Libraries

a. Jack® Motion Library

The University of Pennsylvania's Jack® Motion Library is used to create an

articulate human entity [GRAN94A]. Using their library software in conjunction with the

existing virtual environment application, we can create a human who appears to act in a re-

alistic manner. The human model has the ability to move arms and legs to simulate motion

and can also be designed to change posture. Previously we could only display a human icon

and float him about the Antares model.

b. Distributed Interactive Simulation (DIS) Protocol

The DIS protocol [IST93] is used to ensure compatibility with other NPS

applications. Currently DC VET is designed to be a network simulation. Multiple players

can communicate while running the same application and can train together in the same vir-

tual environment. Users need not be in the same physical locale, just anywhere there is an

11

Internet connection. Planned design considerations include incorporating the DC VET fea-

tures into NPSNET.

D. DESIGN CONSIDERATIONS

1. Real Time Rendering

a. Performance

In order to maintain immersion of the user into the virtual environment, one

must ensure that the overall performance of the application is in real time. A high frame

rate is desirable since slow and variable rates tend to reduce the illusion of reality, partic-

ularly when interaction is between the application and the user. Long lag times between an

action and a perceived response must be avoided. Methods of PVS, collision detection, and

LOD decrease the amount of the model to be rendered and increase overall performance

remarkably [TELL91]. Also, a hierarchical database model and limiting the polygon count

in the model design improves speed and performance.

In the Antares model the use of LOD did not play as important a role as PVS

in polygon reduction. LOD works best where there is little obscuration of other objects,

these objects are visible for long distances, and they are hardly recognizable at long dis-

tances. In the ship model most compartments are at most 20 meters long with the exception

of the engine room, and objects are obscured by room boundaries. Also, an object is rarely

visible at long distances from the viewer. Thus, the PVS algorithm performed better than

LOD in reducing rendered polygon count.

In the construction of the ship model objects placed into the world are con-

sidered carefully. A scene from a ship would have considerably more objects than a house

or building. Since the goal was not to build a precise model of a ship but a suitable trainer

for the transfer of knowledge of damage control skills, many intricate details of a ship's in-

terior were deemed unnecessary. For instance, the lights, piping and wiring in the overhead

are not modeled. It is not essential to create every object since the inclusion of many extra

objects adds to the size and complexity of the model. This increases the polygon count and

12

decreases the frame rate of the program. Once below 10 frames per second, the immersion

of the user into the virtual environment is lost. Some excellent work in real-time shading

[LAST95] and anti-aliasing has been done. However, such features are not incorporated

into this project since the design of the ship model is for training purposes.

b. Immersion

To gain the most training out of the walkthrough virtual environment, the

user must believe he is a part of the world by being immersed into it. One of the best de-

vices in providing this illusion is the HMD. It gives the user a wide field of view, much

like one's eyes. With the aid of tracking devices, the HMD provides to the graphics ma-

chine the direction in which the user is viewing. This is immediately translated and allows

the user to view the virtual environment much the same way he normally sees the real

world. However, there still needs to be some other input device to resolve the speed the

user is moving and any choice of interaction with objects or other entities. Currently a three

button mouse is used to perform this interface. Perhaps a data glove may be a better choice

for input, but that has not been used because of its cost and mean time to failure of the de-

vice. Voice recognition is another consideration which we are researching. It can be used

for some limited control functions such as moving and stopping, opening and closing doors

and manipulating objects. If recognition software can reliably understand rudimentary

commands of a limited set, then this may be the best choice for an input device. In addition

to giving commands, the user should hear the environment. As he traverses the model, he

should encounter sounds that are realistic and give him guidance. Sounds and sound effects

have been embedded into DC VET to enhance realism.

NPSNET is also designed to operate with a head mounted display infantry

man, IPORT. IPORT immerses the soldier into the virtual world and uses a force feedback

pedal device to make the soldier feel the terrain as he moves about. Immersion of the user

into the virtual environment is key to maximizing training.

13

c. Database Model

A hierarchical design of a walkthrough model is essential in obtaining real

time performance during rendering. A large model will have many thousands of polygons

to create for the scene so that a user can interact. The designer must consider what type of

graphical machine is to be used to display the model in real time. In this thesis design, trad-

ing less realism for rendering with a high frame rate was implemented. A ship in many

ways is a more complex model to render than the inside of a building or house. A ship has

many doors, passage ways, and objects hanging from the bulkhead and overhead. Most of

all when modeling a ship there are ventilation ducts, piping and wiring everywhere on a

ship. All the fine details can not be currently rendered in real time because of the sheer

number of polygons in the scene required to do so. In building a virtual environment deci-

sions must be made on what is important for training. Certain objects must be represented

in order to make one believe he is on a ship, but too many objects represented may hinder

the frame rate. The final design decisions come down to what the virtual world is to be

utilized for and what are the necessary requirements to achieve the desired level of training.

The Antares ship model represents a ship but in no means is a precise model.

It strikes a balance of flat shaded polygons and vivid textured polygons to create realism

while maintaining real time performance. Objects for the virtual world are constructed on

a needed basis. Consideration for training minimums and rendering of the scene are con-

tinually evaluated during the design.

d. Training

Training, which is the goal of the Damage Control Virtual Environment

Trainer, must be considered throughout the construction of the virtual environment. In the

virtual environment trainer, fire fighting tools and training objects are placed around the

scene to assist the user in learning fire fighting techniques. The objects in the virtual envi-

ronments are icons which represent the real item. The environment is constructed to look

real enough for a user to know instinctively what things are. Also, with the use of

14

hyper-text and sounds, we can help the user learn about objects he is not sure of. It would

be unrealistic to expect even a new sailor onboard a real ship to know what every piece of

equipment is and what purpose it serves. It is the same in the virtual world, but he can learn

what things are via the trainer and not have to question other people.

E. CONSTRUCTING A VIRTUAL SHIP ENVIRONMENT

An actual model of a naval vessel was highly desired for this project. Building a

model from the blueprints of a commissioned naval vessel proved to be more work than a

few people at a laboratory could do in a few months. The next thought was to obtain an

AutoCAD file of a naval vessel from shipbuilders of naval surface ships. It was discovered

during a survey that each contracted ship builder, even for the same exact class of ship, had

a different format of AutoCAD. An importer would have to filter out the unnecessary data

and retain the needed 3D data for the walkthrough program. However, an AutoCAD file

of an actual naval vessel was not available in time for this research. It was decided to use

the Antares model from NAVSEA in Washington D.C. for experimental purposes. The

original Antares model, built using a MultiGen flight format, comprised about 2,000 poly-

gons. When modified internally to represent a naval vessel it was over 22,000 polygons.

The model is constructed using Software Systems MultiGen modeling tool, which

is an off the shelf product. The advantage of the MultiGen modeling tool is the ability to

design a model in a hierarchical fashion allowing for simpler management with the IRIS

Performer rendering software. MultiGen's hierarchical structure uses a directed acyclic

graph (DAG) to store the visual database. A partial hierarchical view of a ship model is

provided in Figure 2.

MultiGen provides switch nodes to take advantage of Level of Detail (LOD) imple-

mentation instancing of exact multiple objects to reduce the model size. Textures are at-

tached to polygons and stored within the model improving the illusion of realism. Multi-

Gen's greatest feature is the ability to embed non-visual information. This feature is para-

mount to the success of the virtual environment trainer because it incorporates the use of

hypertext displays, PVS, collision detection, and the orchestration of objects.

15

Figure 2: Spatially Partitioned Database Organization

The characteristics of the object are stored within the model. When designing the

model, objects which have motion are tagged and called Degree of Freedom (DOF) nodes.

The articulation of the node is constrained in the model database. When designing a door,

for instance, the rotation of the door node is limited to 90 degrees about the Z axis. To sim-

ulate damage to a bulkhead of a ship from a fire, the normal texture is swapped out in stages

to illustrate the progress of the damage. These animation textures are incorporated into a

switch node and are swapped on the fly during a damage control training scenario. All the

embedded data is stored within the model identified by the Performer application during

the initialization phase. The nodes are read by the application then categorized by their

type. This allows the flexibility of making changes and additions to the model without hav-

ing to modify code in the Performer application. For instance, if a deck is deleted, or an-

other instance of an object in the model is added, such as a door or fire station, no additional

programming requirements are needed. However, if the new type of object is something

which presently does not exist in the model, such as a vertical hatch, it would have to be

coded in the Performer application to handle the object's characteristics.

16

The Antares model chosen for this project was not a naval vessel, but it was still

more than adequate for testing and evaluating the power of training within a virtual envi-

ronment. For actual naval training a model of an actual naval ship from bow to stern is pre-

ferred. Modeling of a naval vessel will be follow on work.

17

18

III. JACK® MOTION LIBRARY

The Jack Motion Library (Jack ML) of the University of Pennsylvania is incorporated

into DC VET to replace the previous human icon representation. The older human icon was a 3D

figure of a sailor, see Figure 3, which had no motion. The icon could be moved about the ship and

rotated to indicate the position of a networked user. However, this failed to truly represent the

user's motion and reduced the illusion of immersion. With Jack ML the body can be articulated

so one can see the head, legs and arms move as a networked user participates in the environment.

This gives the sense of realistic movement allowing a person to react better to the visual gestures

of other users.

Figure 3: Previous Graphical Representation of a Sailor

19

A. SOFTWARE LIBRARY

Jack is a general purpose, interactive environment for manipulating articulated

geometric human figures in a 3D interactive environment. Jack has a rich notion for build-

ing articulated figures with revolute and prismatic joints. Jack ML is a general purpose

constraint engine that uses an iterative inverse kinematics procedure with high degree of

freedom (DOF) joint chains [GRAN94A]. The Jack ML animates the human figure by tran-

sitioning from one posture to another or locomoting in a cyclical posture change. Jack ML

then passes the joint angles back to DC VET for animation by the IRIS Performer run-time

articulated database of human geometry. There are two Jack models to choose from, a high

and low resolution. At NPS we use the low resolution DI figure because of NPSNET real

time frame rate requirements. This low resolution version emulates the high resolution

version in most details, except it has no fingers (fingers and palm are a single element), no

spine, no eyeballs, and no clavicle. The low resolution Jack is a 478 polygon model which

is comprised of 23 joints having a total of 50 degrees of freedom, see Table 1 [GRAN94B].

Soldier.fig DLfig

POLYGONS 2410 478

EDGES 4472 773

NODES 2510 327

SEGMENTS 69 24

SITES 180 147

JOINTS 68 23

DOFs 134 50

Table 1: Jack Figure Characteristics

B. FUNCTIONALITY

DC VET's version of Jack, called BlueJack, is a sailor version of the DI figure. The

networked players see each other as Jack, shown in Figure 4. Jack has the ability to display

the motion of walking or running, head movement and hand motion. Jack ML operates

20

— J

Figure 4: Jack As a Sailor

concurrently with the DC VET application as a separate process. This is an important point

since both processes are running and executing different commands which are not always

in sync with each other. Information has to be passed to the Jack ML via function calls.

For DC VET the parameters for head rotation and elevation, appearance, velocity and head-

ing are passed every cycle. However, hand motion is accomplished differently. A separate

function within the Jack code checks to see what position Jack's hands should be at for the

next Jack ML cycle. For DC VET to manipulate hand motion, hand signals have been

established and an index for each possible signal is created. When a certain hand signal is

21

desired, a queue in DC VET is filled with the request. Next, when Jack ML is ready to

execute that signal, it reads the queue, processes the request and executes the hand motion.

The queue is cleared after the signal is completed and the next hand signal, if any, is

processed. Without the use of a queue, the Jack ML may not receive the hand signal

request before the next cycle and miss the desired hand motion.

Hand motions have to be calculated by breaking down the joints and moving each

segment by the appropriate amount of degrees within a designated time span, see Figure 5.

^

Shoulder Joint (3 DOF)

lbow Joint (1 DOF)

Shoulder DOFs
1) Up/Down
2) Swing Left/Right
3) Twist

Elbow DOFs
1) Up/Down

Figure 5: Jack Articulated Arm Joint Composition

The programmer must conceive all of the possible hand movements that he wants Jack to

perform in the virtual environment. This requires a little pre-planning and calculating to

create realistic motions. The motions are given names for each hand signal which are then

22

hard coded into a file called "HandSignals.C". Currently there are over two dozen hand

motions written, including an arm swinging motion for walking.

Movement of the Jack DI figure throughout the environment is controlled by the

DC VET application. DC VET controls the translation, dead reckoning, body rotation, and

velocity while Jack ML performs the animation. DC VET controls these functions in order

to control multiple entities while conducting collision detection. This also allows for the

smooth swapping of clothing texture from a typical sailor uniform to a firefighting outfit.

The initial incorporation of Jack ML into DC VET suffered from compatibility problems

with texturing, removing of the rifle and initializing animation. A particularly frustrating

problem arose in the initial animation sequence. In order to have any animation accom-

plished, the programmer must initialize Jack to a positive velocity. Starting with zero

velocity at initialization meant that Jack would never be animated, even later when Jack is

moving. But once all the functionality was operational, Jack ML was well worth the effort.

Jack also has the ability to change postures. Keep in mind Jack ML was originally

designed for a soldier not a sailor. These postures are stand weapon stowed, stand weapon

fire, kneel weapon stowed, kneel weapon fire, prone weapon stowed, prone weapon fire,

crawl and dead. In DC VET the standing, kneeling and dead postures are used. During the

loading of the Jack software, the weapon is removed from the tree hierarchy and the

uniform texture for camouflage is replaced with a sailor work uniform. The rifle is obvi-

ously not needed for damage control training, but the option to have a Marine with a rifle

onboard a ship is available.

Jack has made a difference in the representation of the human in DC VET. Players

in the environment can see the direction a networked user is looking, just like a real person.

A person can watch networked users reach for objects, open or close doors and valves, and

perform hand gestures such as come follow me, see Figure 6. Because of Jack's human-

like qualities, two other features where added into the environment: a physical body for the

user himself, and an autonomous Jack that navigates about the environment. You can see

your legs move when you walk and your hand reach to open a door. Once again, these add

to the feeling of immersion. The use of autonomous Jack allows the DC VET application

23

-—■-"•'" t"2 • KtfXiV'''-";5V--'''
1

--T--——t*''* .v IfiHHffiHHHll
^^ttä:H?

fev:'
*K1S#>'~V .'..-• •■ fl '

J *

jKjSpEsr..,,;:,^,-.-.!.-: •■ l ^ i fgg^v^': ^T-■' ' V «IP^'- 1 a
j •'11

Ü9 $'
V .".] IfiHfeSi^'- Cl f"

Figure 6: Jack's Hand Motion

to have a tutor inside the environment. A roving autonomous entity can teach you how to

navigate about a ship and point out items of importance just like a person giving a guided

tour.

The use of the low resolution Jack is implemented because DC VET is expected to

have several people networked together with one or more autonomous Jacks operating at

the same time. Each Jack consists of almost 500 polygons, and with several Jacks the poly-

gon count can increase quickly while decreasing the frame rate. Operating DC VET with

Jack ML proved to be capable of managing the graphical rendering load. Even on the slow-

er Reality Engines, Power Series I, the application maintained good frame rates. With three

networked stations and three autonomous Jacks, frame rates of 10 to 20 frames per second

are achievable. Performance of the overall application is more than adequate to support

immersion for training.

24

C. MOTION

Jack was incorporated to replace the original sailor representation and show human

articulation in the virtual world. The desire to use the Jack figure in DC VET went beyond

having Jack act as a networked entity. To gain familiarization with the shipboard environ-

ment, a guide was needed to help the user along. Jack has become the tour guide and

instructor for new people in the DC VET. Jack can be scripted like a lesson plan to show

and tell the user what his world is about. In order to have a Jack entity move in the world

a method of moving him from point to point was developed. It is to be quick and easy to

implement, and yet allows Jack to move in a natural manner.

When creating the autonomous Jack, the best motion path to travel is that of a

human. To move Jack from one point (in three dimensions) to another, a 3D location is

given along with the speed and final direction to be facing when he arrives there. An algo-

rithm using trigonometry, to find the shortest path combined with a heuristic that uses a

weighted average to orientate Jack in the proper direction was created. Jack does not whip

around on the shortest course to the new place since humans turn progressively in the direc-

tion they want to go. Hence he turns at a rate appropriate to the desired final direction and

shortest path. This is computed every frame cycle giving Jack a smoothing walking

motion, see Figure 7. The walking algorithm orientates Jack to reach the desired location

and heading even if he is facing the wrong direction as shown Figure 8. If Jack is given a

path that did not have enough room to maneuver, Jack pivots his body to face the correct

direction before starting on the next event leg.

Some of the paths computed by the algorithm are not the quickest path a human

would walk. However, the algorithm does offer natural movement vice square facing

movements like an army platoon.

25

End Point

Facing S^ ""
Direction \

1

s Motion

\
\ Algorithm!

Square
Column
Path

Shortest
Path

\ \
\ \
\ \

\ *

\

¥ Start Point

Facing Direction

Figure 7: Walking Motion Path

/•

X Start Point

Motion
algorithm

N

Facing \
Direction ^

\
n

Shortest \
Path \ \

\ \

\

Square
Column
Path

* End T

Point

Facing
Direction

Figure 8: Opposite Direction Walking Motion Path

26

IV. LEARNING ENVIRONMENTS

A. TRAINING

The main focus of the original DC VET was to be a virtual environment trainer.

Now, with the capability of creating three-dimensional worlds that look much like the real

world and being able to navigate and interact in real time with them, new methods for

teaching people have been unleashed. Virtual environments will be a new avenue for train-

ing much like video tapes which instruct people in any number of activities from aerobics

to civilian flying. Today a person can go to a video store and rent a video to teach them-

selves civilian pilot skills for flying. Lessons range from take-offs and landings, navigation

and in-flight emergencies. These tapes are an inexpensive way for a person to learn and

prepare himself for the many hours of flight time required to qualify for a license. He can

learn when he has time, and repeat lessons that necessitate additional instruction. Virtual

environments proficiently accomplish instruction of these skills. People learn through

experience and virtual environments are the next best thing to being there. DC VET's

specific goal is to teach basic firefighting and engineering causality skills. It accomplishes

this by allowing users to learn what things are in the environment by inquiring or simply

observing articulated humans illustrating procedures in casualty control. However, DC

VET has not reached the level of instruction necessary for teaching all the higher level fire-

fighting skills. In time, advanced technology will enable even more realistic environments

to be developed.

1. Methods of Learning

NPS has a networked environment, DC VET, where people can interact together,

become familiar with their surroundings and learn procedures in fighting shipboard fires.

A structured training program for instruction was desired for DC VET. It was imperative

that the user could learn how to move about the virtual environment and interact with rela-

tive ease. The concept of using a guide to help the novice user in the world came about by

27

mimicking the real world where one would have a person to show him where things are and

discuss their function This concept is similar to indoctrination periods that new employees

go through. DC VET uses the autonomous Jack to guide the user through the ship to find

new compartments and become familiar with the ship, see Figure 9. After the familiariza-

tion phase the user can progress and learn how to combat fires and engineering casualties

Figure 9: Jack Discussing a Pump's Operation

in the engineroom. He can watch Jack fight a fire and extinguish it, Figure 10, or cut off

supply to a steam or fuel oil leak, Figure 11.

There are four options for the user to learn what is in the environment. First, watch

Jack move through the ship and watch a totally guided tour. This is much like a video

presentation. Second, the user can follow Jack through the ship and watch how he reacts.

Third, he can be lead by Jack through the ship, but has the option to stop and explore objects

of interest. Finally, he can just figure it out himself, at his own pace, by trial and error.

Having the different options allows the user flexibility to learn at his own pace. He can

28

Figure 10: Jack Illustrating Fire Fighting Methods

Figure 11: Jack Closing a Steam Valve

29

switch between modes, reverse or fast forward a scene and even re-start from the beginning

at anytime.

With the autonomous Jack one can see a human figure guide him. It is intended that

virtual trainers be capable of teaching the user about the environment vice having another

individual constantly supervising. We have taken the instructor from the classroom and

placed him into the virtual environment. The Jack ML can be used to give hand signals to

point in a specific direction while simultaneously playing audio sound clips to present

information. Jack can walk up to a Main Feed Pump, discuss its function in brief, point to

the intake and discharge piping. When following Jack, he can notify you that you are going

in the wrong direction or that he'll wait here for you.

2. Lesson Designing

The more complex the training and the more topics to be covered, the greater the

amount of planning required. This is much like an instructor preparing an outline for class

and deciding on the contents to be discussed. The better prepared the lecture the more

beneficial the instruction. Training lessons are typed into a script data file by the lesson

designer and can be played back at anytime while planning a lesson. The designer of a

lesson can review where and what Jack has done and if the lesson meets expectations.

When recording scripts, one has to take into consideration where (in three dimensions) Jack

is planned to perform a task. Also, a numeric index is used to choose the different tasks

presented in Table 2. Writing a scripted lesson is relatively easy since the planner just

moves through the world and looks in the direction where he wants the events to happen.

Then the positions are recorded with the event as he decides on the lesson.

Having a scripted lesson, which is not much different from an instructor's class

outline, allows the individual flexibility in learning. This allows the user to progress

through training lessons at his pace, repeat lessons that he desires, and skip other lessons

that were simple to him. The training is dynamic and flexible to the user's requirements.

30

The user does not feel embarrassed or pressured to learn. The environment is well suited

for the natural retention of knowledge and the learning of skills.

Scripted Jack Events

Move Pivot Go Up/Down
Stairs

Open/Close Doors

Play Sound-bites Start Fire Start Steam Leak Pick Up Nozzle

Nozzle Water On/
Off

Perform Hand
Signals

Activate Halon Activate Ventila-
tion

Open/Close
Valves

Jump to Other
Sections of the
Ship

Wait/Pause Display Text

Table 2: Autonomous Jack Instructions

Many of the features created for instructing autonomous Jack are choreographed

with other events that affect the user and other networked entities. Therefore, consideration

when designing new functionality requires rebuilding of the original DC VET applications.

The redesigned version of DC VET uses similar control functions that manipulated

networked entities to operate the new autonomous entities. To keep the networked simu-

lation states congruent, any event that a networked or autonomous entity perform must be

reflected in all networked simulations. The environment is now capable of supporting the

user as an entity, networked and autonomous entities all at the same time.

DC VET is not at the point where we can break down equipment into smaller parts

and train a mechanic to fix an engine. But future designs of virtual ship environments may

allow a person to move around a ship and learn about the components of the Main Feed

Pump. A person at some critical time will require the knowledge for casualty control train-

ing, maintenance or repairs. Training of this type is essential and needs to be expanded.

The capability to train an engineer to operate and repair a piece of equipment at sea without

an instructor is necessary. At sea we do not always have the expertise for every piece of

equipment and can't wait weeks for the next port visit or technical representative to be

31

flown out. An onboard trainer can improve productivity, decrease equipment down time

and save dollars.

B. CORPORATE TRAINING

Motorola University was looking for a means of broadening the manufacturing

training program [ADAM95]. They decided that virtual reality technologies would be a

cost effective way to replace their training course for operating a robotic machinery line.

Virtual Reality would provide portability of the training tool and allow for quick updates

of changes on the production line. Motorola University tested their concept on the Advance

Manufacturing Course of the Pager Robotic Assembly Facility. There were three groups

of people for the evaluation. First, a trainer using a life size replica of the assembly line.

Second, VR group using a desktop console. And lastly, a VR group using a HMD with

tracker. They found that the VR group using a HMD with tracker tested much better than

the other two groups. Comparison was recorded by the number of errors and missed steps

made by each group. These results are presented in Table 3 [ADAM95]. Essentially the

VR HMD with tracker did six times better than the laboratory or VR desktop groups.

TASK
MOCK-UP

LAB
VR

DESKTOP
VR

HMD

Setup 13 14 1

Start-up 5 6 1

Running 0 0 1

Shutdown 6 4 1

Average 6 6 1

Table 3: Mistakes Observed in The Test Groups

Motorola concluded that the reason for virtual reality success in their project is that

it is individually driven and people can practice at their own pace. The VR group with the

HMD with tracker were totally immersed and focused in the training. The virtual environ-

32

ment was designed in six weeks using PC based software from Superscape. Detailed of

modeling of the assembly line equipment was important as well as sound bites reflecting

action in the environment. The operator of the environment can associate actual sounds in

the virtual environment to the real assembly line later. Superscape does not provide as

much functionality and capability as Performer and MultiGen used in the NPS graphics

laboratory. DC VET uses the same basic concepts of Motorola and should be capable of

realizing similar positive results.

C. SUMMARY

Continuing the enhancements of virtual trainers, DC VET needs to be transformed

into an environment that can also support multimedia to supplement the realistic way of

navigation and learning that already exists in the environment. Video and sound together

are required to explain more articulated subjects until virtual environments are robust

enough to simulate this themselves. For instance, a short video take can explain how to don

an oxygen breathing apparatus (OBA), explain the refrigeration cycle, or illustrate how

steam flows through the engineering plant. Multimedia in combination with the three-

dimensional environment will enhance the training even more. A person later can walk up

to an OBA on a ship and remember the video take on how to don the OBA. In this manner

training can successfully be accomplished.

33

34

V. NETWORKED ENVIRONMENT

A. DIS COMMUNICATION PROTOCOL

A networked environment was essential to the design of the DC VET because most

naval training is team training. It was necessary to have multiple players in the same envi-

ronment interacting to solve the same problem. NPSNET has had great success with the

Distributed Interactive Simulation (DIS) protocol which was used for this project as well

[IST93]. All government built networked simulations must communicate via DIS

[DOD92]. The DIS protocol uses packets of data called Protocol Data Units (PDUs) which

are transmitted over the graphics laboratory's network. The entity state PDU is used to

send the other players an entity's location in the model, direction and linear velocity, accel-

eration, posture, objects manipulated, and the scenario state. Each player is also assigned a

unique entity number to organize PDU data. The use of linear velocity, acceleration, and

dead reckoning parameters allows the program to plot the user's next position even if a

PDU is lost.

Networking humans in an environment, instead of vehicles, presents different prob-

lems. Humans can change their orientation more quickly than vehicles and have many

postures in a short period of time. This necessitates the propagation of more PDUs than a

vehicle simulation in the same amount of time. A PDU is transmitted on a threshold basis,

or if certain events occur. For instance, if the user moves a few meters, comes to a quick

stop or moves an object. The timely transmission of a PDU is critical to the immersion, but

the system should also not be overloaded with excessive PDU packets.

When in the network mode, the program constantly scans for entity PDUs through-

out the walkthrough simulation. When a new player's PDU is received, it creates a new

Jack sailor dynamically and translates him to the respective part of the ship model. This

virtual environment can also operate while other DIS networked environments are operat-

ing without interference. The program discriminates other PDUs of other simulations via

35

a reference number located in the Exercise ID PDU subfield. A networked observer mode

was also created so people can watch and learn what others are doing in the virtual envi-

ronment trainer and not interfere with the training. The other players don't even know the

observer is there. A final networked mode is a sound server which was created for the

graphics reality engines without sound capability. A sound capable computer acts as the

sound server, reading PDUs from the network and creating the sounds for one or more play-

ers.

Modifying DC VET to network motions represented by the Jack Motion Library

required use of additional PDU subfields. The PDU type used in the NPSNET DIS proto-

col is shown in Table 4. Of all these PDU types to chose for DC VET, the Entity State PDU

Variable Length Static Length 1

Entity State Fire

Detention Resupply Cancel

Service Request Repair Complete

Resupply Offer Repair Response

Resupply Received Collision

Action Request Create Entity

Action Response Remove Entity

Data Query Start/Resume

Set Data Stop/Freeze

Data Acknowledge

Event Report Laser

Message

Emission

Transmitter

Signal

Receiver 1
Table 4: Various NPSNET PDU Types

36

Field Size
(Bits)

PDU Fields PDU Subfields

96 PDU
Header

Protocol Version 8 bit enumeration

Exercise ID 8 bit unsigned integer

PDU Type 8 bit enumeration

Padding 8 bit unused

Time Stamp 32 bit unsigned integer

Length 16 bit unsigned

Padding 16 bit unused

48 Entity ID Site 16 bit unsigned integer

Application 16 bit unsigned integer

Entity 8 bit unsigned integer

8 Force ID 8 bit enumeration

8 Articulated
Parameters

8 bit unsigned integer

64 Entity
Type

Entity Kind 8 bit enumeration

Domain 8 bit enumeration

Country 8 bit enumeration

Category 8 bit enumeration

Subcategory 8 bit enumeration

Specific 8 bit enumeration

Extra 8 bit enumeration

Table 5: Entity State PDU

37

Field Size
(Bits)

PDU Fields PDU Subfields

64 Alternate
Entity
Type

Entity Kind 8 bit enumeration

Domain 8 bit enumeration

Country <S bit enumeration

Category 8 bit enumeration

Subcategory 8 bit enumeration

Specific 8 bit enumeration

Extra 8 bit enumeration

96 Entity
Linear

Velocity

X - Component 32 bit floating point

Y - Component 32 bit floating point

Z - Component 32 bit floating point

192 Entity
Location

X - Component 32 bit floating point

Y - Component 32 bit floating point

Z - Component 32 bit floating point

96 Entity
Orientation

Psi 32 bit floating point

Theta 32 bit floating point

Psi 32 bit floating point

32 Entity
Appearance

32 bit record of enumerations

320 Dead
Reckoning
Parameters

Dead Reckon Algorithm 8 bit enumeration

Other Parameters 120 bits unused

Entity Linear Acceleration 3x32 bit floating point

Entity Angular Velocity 3x32 bit integer

nx 128 Articulation
Parameters

Change 16 bit unsigned integer

ID-attached to 16 bit unsigned integer

Parameter Type 32 bit parameter type record

Parameter Value 64 bits

Table 5: Entity State PDU

was the only one used, shown Table 5 [IST93]. The entity state PDU is generic enough

for any entity type, such as an aircraft or human. It is also variable in length so that as the

design of DC VET matures, more data can be packed into the PDU packet for transmission

over the network.

To articulate Jack on other computer stations, status parameters are loaded in the

network PDU index of the application and transmitted at desired event criteria. It is possi-

ble to pass a PDU every cycle to keep other stations informed about your networked enti-

ty's status, but this would quickly saturate the network with a large group of players. To

reduce the number of PDUs on the network, data is transferred over the network only when

an entity's status has changed or if an event has occurred. When there is no status change,

no entity state PDUs are sent for up to five seconds. This helps to maintain a low network

load. To determine the network entity's location when no PDU has been received, a dead

reckoning algorithm is employed to estimate the entities current location. This feature

works quite well, but can cause jumping of the networked Jack figure in the world if his

speed has changed drastically, or if DC VET is operating on a much slower machine, such

as an SGI Indy or Indigo .

B. NETWORKING SHORT FALLS

The DC VET has been evaluated using five players and there was no observable lag

time or saturation, Figure 12 [ZESW93]. The real-time rendering of the scene with the

networked players worked satisfactorily. Users were able to interact with each other and

view the changes and effects caused by each other in real-time. A short fall found with

networking is the presence of race conditions. If two users perform the same operation at

the same time, the last person's action is final. For instance, if one person is closing a

door and another is opening it, then the door swings back and forth. This is similar to the

reality of two people fighting for the same item. The person who quits first loses, or last

39

i

10
MS

Maximum Latency

Application
1UU iVK>

Application

10
MS

300 MS
Presentation Presentation

Session Session

Transport Transport

Data Link Data Link

J Physical Physical

Figure 12: DIS Maximum Latency Specification

wins. With many of the object manipulations in the environment this did not appear to be

a major problem. Solutions for undesirable race conditions still require follow on work.

Another potential networking problem, besides race conditions and saturation, is

lost or corrupted PDUs. If a PDU is lost and no simulation status has changed, then the

dead recognizing algorithm and new PDUs will be able to maintain the integrity of the

simulation. However, a networked station will not be able to maintain the simulation if a

PDU containing an event such as initializing a fuel oil leak, activation of the halon system,

or fire nozzle state change occurs is lost. There would be different states in the same simu-

lation with entities interacting where one has a fire ragging and the other is calm. PDU

packet loss or corruption is not common, and this potential networking error has not affect-

ed the DC VET application during its nine months of operation to date.

There is another difficulty with new stations entering the DC VET simulation while

other networked players have changed states in the simulation. The new player does not

receive a previous history of events. This causes doors and values to be in different posi-

tions, and damage to bulkheads from fires not to be rendered in the new player's environ-

40

ment. To solve this, a PDU packet containing the history of the environment would need

to be sent out to a new player asking to join the simulation. After receiving this packet, old

and new players in the DC VET environment would have the same simulation with the

same states. This was not an issue since the DC VET simulation of networked players are

together, in the same laboratory or location.

The networking of the environment is another critical factor in creating a virtual

environment trainer where multiple people can participate. With the ability to transfer

postures and motion of a human, like Jack, we can visualize in the virtual environment what

other networked players are doing, like Figure 13. Networking has made the Damage

■a,W|llM st+Kwtsm-msm®, WSfäBSSIm*

Ü $m

' Ü

Figure 13: Networked Jack Entities

Control Virtual Environment Trainer a platform worth consideration for other types of

group training as well.

41

42

VI. COLLISION DETECTION

A. INTERSECTION TESTING

1. Deck and Object Collisions

Iris Performer features for computing intersection testing are utilized in the walk-

through project. Intersection testing gives the walkthrough program its interactive capabil-

ity allowing tests for collision detection, object manipulation and hyper-text displays with

sounds. Performer's method tests line segments against the database scene. In walk-

throughs, there are many different objects in the scene which are of different shapes and

sizes. Because of the number of objects in a scene, many more line segments are required

for intersection testing to resolve collision detection. During the initialization of the

program every object is assigned an intersection mask when the model database is loading.

Hence, during real-time traversal of the model, there is no delay in learning what each

object is. For the training and familiarization phase of this project the intersection masking

of objects allows the user to touch any object in the world with the mouse and discover what

it is. This is a great tool for the novice sailor who, having never been aboard a ship, needs

to know what things are. In the real world, the sailor would have to have a "sea-daddy"

follow him around and answer a myriad of questions.

For intersection testing, Performer line segments are taken from the user's view

point and are then embedded in a pfSegSet structure that retains the origin, length and

direction [KING95]. (The pfSegSet embodies an intersection request as a group of line

segments, an intersection mask, discrimination callback and traversal node.) The intersec-

tion testing is computed and checked for a bitwise AND of the intersection traversal mask

and the intersection mask of the object. When the result is non-zero, an intersection has

occurred and the line segment is stored in the above pfSegSet structure which is then tested

against the geometry of the object. When an intersection test is positive, information about

the intersection point is saved in a Performer pfHit structure for later use by the walk-

43

through application. Otherwise, there is no intersection and the traversal does not continue

checking past the object's child nodes. Within the pfflit structure, information about the

intersection's coordinates, normals, transformation matrix of the object, the node name and

a pointer to the intersected objects are saved. A query is used to extract the information

from the pfHit structure and ,by default, the nearest object to collide with it is the one

queried. This can be changed by a discriminator callback function [ROHL94].

There are two types of collision detections tested during each frame in the walk-

through environment: deck (ground) collision and object collision. Iris Performer pfSegSet

originates from the user's view point. Seven line segments are calculated every frame: one

for the deck collision and the other six for object collisions as seen in Figure 14. The deck

collision detection scheme points the line segment in the negative Z axis down twenty

meters. By checking intersection every frame the height-of-eye is accurately maintained

whether it be on a flat surface or an incline, such as a ramp. To prevent walking on objects,

such as tables, piping and machinery equipment, the traversal intersection masks are unique

for decks. A bitwise AND is computed, and if a DECK_MASK and a COLLIDE_MASK

result in a non-zero value, the intersection information is loaded into the pfHit structure.

When the user is traversing a ship's ladderwell (stairs), the height-of-eye is adjusted rapidly

to the new step which gives the illusion of walking, vice gliding, up or down steps.

Collision into objects is also calculated every frame utilizing six line segments

along the X and Y axes in the direction of the user's motion. There are two sets of line

segments. The first set is at the origin of the viewer's height-of-eye and projected straight

out and 45 degrees from the center, left and right. A second set of segments in the same

directions are taken at the user's knee level, which is one-thirds the height-of-eye. Two

different levels ensures that the user does not walk into low objects like equipment nor high

objects like piping. The length of a line segment is 2.0 times the previous distance between

frames or a minimum of 0.1 meters. This prevents the user from passing through an object

or bulkhead (wall) before reaching it. When collision detection occurs, the user is returned

to the previous location and heading before the collision which gives the user the illusion

44

Top Down View
Direction of Motion

-►

^» Line-of-Sight

Axes

Object Collision Detection Segments
X

Side View

-► Upper Segment Set

Direction of Motion
 ►

-► Lower Segment Set

Axes

Deck Collision Segment

Figure 14: Collision Detection Scheme

of bouncing off the object. When the user is moving backwards, the line segments are

simply reversed to perform collision detection in the opposite direction.

45

The above collision detection method works well most of the time in a non-

networked simulation. Note, when the user is networked and able to view others, the above

method is limited. When the user is stationary and in close proximity of an object or bulk-

head, others can view the networked user's shoulders or hands passing through objects

while he rotates when stationary. This occurs only in the networked environment since you

cannot see yourself in the stand alone DC VET. To overcome this loss of realism in the

networked version, additional line segments are added. Four additional segments, two sets

of two, are tested at near right angles to the user's direction at the height-of-eye and knee

level. These additional line segments are always .25 meters because, the distance from

center of the body to the shoulder is .2 meters. These additional segments function like the

previous six line segments. This prevents the user's body from rotating into an object. As

the complexity of our human in the world grows the complexity of intersection testing

increases. With the articulation of legs and arms with the Jack® Motion Library

[GRAN94A], dynamic points for intersection testing of the user represented by Jack must

be incorporated.

Another modification to the collision detection algorithm takes into consideration

the user carrying objects in his hands. Previously when carrying objects like a fire hose

nozzle, it would pass through other objects or the bulkhead (wall). A solution to solve this

problem was to extend the center line segments (upper and lower) when the user is carrying

an object. When an object changes state and is placed into the user's hands, an index to the

length of the new center line segments are passed to the collision detection scheme. For

instance, when the user holds the nozzle, an additional 0.4 meters is added to the center line

segments to forecast the collision and prevent the held object from passing through any

other objects. Increasing only the center line segments and not the other 8 prevents the user

from being trapped in tight locations, like ladderwells or passageways of the model.

Adding to the side segments does not represent the user's true occupied space. This solu-

tion is not perfect but reduces significantly the chance of viewing user held objects passing

through other objects. Another option would be to have a second set of line segments from

46

the end of the object perform collision detection like the upper or level detection segments

show in Figure 15. This could be incorporated into the original collision detection algo-

Top Down View
Direction of Motion

Variable

Length

Nozzle

Object Collision Detection Segments

Line-of-Sight

Axes

X

Figure 15: Modified Collision Detection Scheme

rithm or could be a separate collision detection algorithm which returns a boolean value to

a positive collision detection. This should reduce the chances even further of any hand held

objects passing through other objects.

2. Autonomous Agents

All the conceptual designs of collision detection algorithms discussed so far have

been about the user himself in the virtual environment. All collision detection resolutions

have been from the user's view point and basically stop the motion of the user and relocate

him to the previous location prior to detection. With networked entities this was still a

satisfactory means of resolving collisions. However, with the introduction of autonomous

agents, such as Jack, DC VET needs to determine collisions for its autonomous agents too.

The concepts are the same as the previous methods of collision detection, but now each

autonomous agent must know if it collides with other objects. A separate function provides

47

this and returns a boolean value indicating collision or not. It is up to the designer to add

limited intelligence and have the agents perform in a human like manner when they walk

into other players, objects or bulkheads. The Marine outside the Combat Information

Center (CIC) in the Antares model walks back and forth until something blocks its path.

When the collision occurs, the Marine simply turns around and walks back in the opposite

direction. The collision detection can also be used to start events when a user comes in

proximity of a room. Sound events can be played or states in the environment can be

changed. This is much like a mine waiting to explode when somebody gets close enough.

B. PICKING

Intersection testing is also incorporated into classifying the type of objects in the

virtual environment. A Performer function called pfChanPick is used to return the node or

object picked. It operates much the same way as intersection testing with pfSegSet and

pfHit. When the mouse points to an object, a set of screen coordinates are returned. The

pfChanPick function generates a line segment from the user's eye point which passes

through the near clipping plane generated by the screen coordinates of the mouse. Results

from the intersection testing are stored in a pfHit structure as well. The pfHit structure

returns a pointer to the intersected node's object which is then checked against the masks

assigned during the program's initialization to see if the object can be manipulated or can

display hyper-text with sound. By pressing the mouse buttons while pointing to an object,

the user can open doors, turn valves and move objects.

Collision detection is paramount to the success of this project. It aids the user in

navigating realistically in the virtual environment and resolves the distinction between

objects to manipulate and objects which display information. This interaction helps the

immersed user learn the necessary skills required in damage control. In the evaluation of

intersection testing for collision detection, object manipulation and activating hyper-text

with sounds, there was no noticeable degradation to the real-time rendering of the virtual

environment using the Reality Engine 2. However, in the laboratory, using the single

processor Silicon Graphics Indigo Extreme computer and no textures, the frame rate was

reduced significantly to five frames/second. As the need for more intersection testing

becomes necessary the overall performance of the trainer may decrease. Additional meth-

ods may need to be included to increase efficiency and generality of intersection testing.

49

50

VII. USER INTERFACE

A. INTERFACE CONTROLS AND DISPLAYS

For the walkthrough project a simple interface was desired because the intended

user of the application is not necessarily a computer user. The interface is designed to be

fairly intuitive so that there is minimum instruction required. The final design uses a large

monitor or a Head Mounted Display (HMD) as the output device, and a mouse as the input

device. Data gloves and video tracking devices were considered as the means of tracking

the user's motion, but because of the cost or reliability of these items, they were not used.

The CAVE (Audio Visual-Experience Automatic Virtual Experience) is another system

that would work extremely well in the virtual environment trainer [NEIR92]. However,

due to costs and restricted portability, it was not considered for this project. The preferred

method for immersion into the virtual world with DC VET is the HMD. The HMD gives

the user a wider field of view (100 degrees) and intuitive feeling of navigating the environ-

ment. The user just looks in the direction he wants to travel and presses a mouse button to

move forward, backward or to stop. If the user wants to open a door, close a valve, press

a switch, move an object or inquire about an object, he looks directly at that object in the

center of the screen, then presses two mouse buttons together; the object does what the user

wants. In spite of its advantages, it is our experience that most people don't like to wear

the HMD for extended periods of time. Another problem encountered with the HMD is the

difficulty in reading the hyper-text displays. The letters are too small for the 745 by 225

resolution HMD in the laboratory. Better HMDs costing in excess of $25,000 may solve

this, but the goal here is a low cost system. With four people networked together for a train-

ing scenario, it could get costly to provide better HMDs. Sounds were added for effects

and to help alleviate the problem of reading hyper-text with the HMD. When a user

inquires about an object, he can hear what the hyper-text displays.

51

The use of a 1280 by 1024 resolution large screen monitor is just as adequate for

displaying the virtual environment. The monitor is set to a 45 degree field of view which

is the normal focusing field of view for humans. Because of the monitor's high resolution,

a Graphical User Interface (GUI) is located at the bottom of the scene to assist the user. The

user can quickly adjust his height-of-eye, switch from the walk mode (collision detection)

to a fly through mode, immediately jump to key points in the ship model, start/stop training

and familiarization lessons, or have the trainer show him the way from point A to point B.

It also displays the user's current location in the X, Y, Z planes, plus heading, pitch and

roll. Another feature is a Deck Overview of the ship which allows the novice user to see

an outline of the ship and his current location, represented as a black dot, so he will always

know where he is in relation to the ship. Figure 16 shows a scene of the engine room with

a hyper-text box displayed, the deck overview and GUI controls.

^,.,--..,^.,....^,.,..-!v.._)!K.....i!s^^ra| m ^y~- •

&£p*3

Figure 16: GUI Controls With View of Engineroom

52

A mouse is used as the primary means of input which controls speed, direction of

motion, view point and object manipulation. The operations which can be performed with

a mouse are listed in Table 6. To change the user's view point, move the mouse pointer to

Mouse Controls

Action Left Middle Right

Move Forward X

Stop X

Move Backwards X

Close a Door/Valve X X

Open a Door/Valve X X

Pick Up a Fire Nozzle X X

Start/Stop Fire Nozzle Water X X

Start Ventilation System X X

Start Halon Flooding System, X X

Display/Hear Object Data X X

Start/Stop Jack Tour Guide X X

Table 6: Mouse Button Interface and Functions

one of the four quadrants and the screen will follow. To look up and left, just move the

mouse to the upper left quadrant. To move right, move the mouse to the middle right of the

screen. When the user wants to open a door, he moves the mouse over the door and presses

the right and middle mouse buttons at the same time. There is a "dead zone" in the center

two inches of the screen created to prevent the screen from panning in any direction. The

keyboard is also used as a means of input and it controls many functions in addition to initi-

ating damage control scenarios. One may use the keyboard as an alternate control instead

of the GUI, see Table 7.

The preferred method for immersion into DC VET would be a HMD with a 3D

mouse. This would allow the user to gain the sense of reaching out to objects in the envi-

ronment instead of just pressing a mouse pointer from a 2D mouse over an object at any

53

Functions Keyboard Input 1

Display GUI and Deck Overview 'Fl'

Turn On/Off Local Sound Effects 'F2'

Turn On/Off Local & Global Sounds 'F3'

Exit Program 'ESC

Toggle CPU and Graphics Statistics 'D' or 'd'

Initiate Fire Casualty Sequence 'F' or T

Place Fire Nozzle Back to Fire Station 'P' or 'p'

Toggle Texture Display 'T' or T

Toggle Wire Frame Display 'W or 'w'

Jump to Bridge Way Point Shift 'B' or 'b'

Jump to CIC Way Point Shift 'C or 'c'

Jump to Engineroom Way Point Shift 'E' or 'e'

Start/Stop Demonstration - Jack as Guide 'J' or 'j'

Start/Stop Demonstration (Camera Follows) Shift 'J' or 'j'

Start/Stop Demonstration (Wait for User) 'H' or 'h'

Restart Demonstration/Lesson Shift 'K' or 'k'

Change to New Demonstration/Lesson 'L or T

Jump to Vehicle Loading Dock Way Point Shift 'P' or 'p'

Save RGB Image of Display Control 'PrintScreen'

Move Forward an Event During Demonstration Shift'+'

Move Backward an Event During Demonstration Shift'-'

Table 7: Keyboard Interface and Functions

depth. The use of voice recognition for issuing commands would have also been ideal for

this type of environment. Voice recognition would allow the user to walk around the ship

without having to focus on objects to be manipulated, or requiring a coordinated mouse

click to initiate a response. Voice as a input device would also allow the user to make

quicker responses to the environment. Another reason for voice activated commands with

DC VET is that all the engineering scenarios can only be activated by the keyboard. The

54

software to test voice recognition was not available for this thesis, but is a worthy consid-

eration for future work.

Another alternative to voice recognition and the keyboard as input devices is to use

floating icons that can be seen in the HMD or from the console. These icons would become

visible to the user when a mouse button is pressed. An icon menu could appear and lead to

sub icon menu's to prevent the screen from being cluttered. When using the HMD and icon

menus, a user can start an engineering casualty easily. The choice of icons would have to

have some likeness in representation to the action taken, so the user would need to instinc-

tively know what the icon means, especially if the user is new to DC VET. The use of icons

with a 2D mouse is feasible with the DC VET application and should be incorporated into

the next revision.

B. SOUNDS AND EFFECTS

The addition of sounds into DC VET was necessary to increase the feeling of

immersion. Originally sound-bites would be used to indicate a response to inform the user

of general conditions. The user would hear an alarm sound when there was an engineering

casualty, or be able to tell that the ventilation system was activated for de-smoking. Sounds

provide instant feedback and allow the user recognition of events that are not visibly appar-

ent. With the addition of sound-bites for recognition of events, came the need for the ability

to give information about the world. In the original DC VET, the user was able to navigate

through the ship and read text which explained what an object was and its basic function.

Now with the addition of the sound library, the user can hear and read the description simul-

taneously.

To implement real time sounds in DC VET, a sound library was utilized. Sound-

bites that are used repeatedly, like clanking noise of feet on a ladderwell (stairs), ventila-

tion noise, or alarms, are loaded into memory during program load up. This allows for

instant audio feedback with no noticeable delay. However, lengthy sounds that are describ-

ing what objects are in the world are not loaded into memory, and have a slight latency

55

when playing the sound file. With DC VET being a networked environment came about

the desire to networked sounds. Also, not all the reality engine graphic computers have

sound capability. A sound server program to play these sounds was necessary. The DIS

communication protocol, used for networking multiple stations, was also utilized for the

networking of sounds. The sound server is capable of providing sounds for just one station

or a group of stations in the same area. The sound server application reads PDU packets

off the network, waits for a sound request and plays the requested sound file. When oper-

ating with multiple stations, it is also verifies if a sound request for the same sound was just

requested. This prevents hearing the repeated playing of sounds, like alarms, multiple

times because more than one station has requested it at nearly the same time. If the sound

server did not discriminate requests, the sounds will have a reverb effect. This occurs

because the sound server is capable of playing up to four sounds simultaneously and can

play the same sound file at the same time.

Most sounds in DC VET are initiated because an event, engineering casualty, or an

input from the user was sensed by the program. When the user causes an event to occur, a

call to play the corresponding sound-bite is sent to the sound server. For audio to explain

what objects are in the world, additional callbacks were used to find the corresponding

sound file of objects created in the model. MultiGen allows for the imbedding of text into

the model. This allows the designer to write information about the object's name and func-

tion, and have the corresponding sound file be saved with the object. When the user presses

his mouse button to learn about an object, the name of the sound file is retrieved from the

model database and is sent to the sound server. The sound server receives the request and

plays the information sound file, and the user hears about what the item in question is with-

in a second.

Sounds can be also used when creating scripted training lessons using the autono-

mous Jack. The script can call sound files to inform the user of the purpose of this lesson

or about things that can not be truly experienced in the world. The designer has the ability

to add sounds effects to the beginning of each event planned in the scripted lesson. This

56

allows for the flexibility of using audio when needed during the designing of a Jack lesson

in the environment.

C. SUMMARY

The use of sound for information and effects in DC VET adds to the realism of the

environment in much the same way NPSNET has done for years. DC VET was created

more for familiarization training, vice simulation skills enhancement, and has the ability to

instruct using audio. The use of audio is just like having a tour guide or an instructor teach-

ing you about the world. Sounds improve the DC VET from the original design. To go one

step further, the incorporation of short video clips could also be used to teach skills that are

difficult to render in the existing virtual environment. For instance, DC VET could teach

a person how to don an OBA (Oxygen Breathing Apparatus) by just clicking a mouse

button and mouse pointer on an OBA and watching a short video of donning the OBA.

There are many means of adding training into the virtual environment. The more training

that can be imbedded into the virtual environment, the more it will be capable of augment-

ing existing training and replacing other training methods.

57

58

VIII. CONCLUSION

A. RESULTS

The goal of this thesis is to increase the capability of the DC VET (Damage Control

Virtual Environment Trainer), to prove the feasibility of using virtual environments as a

trainer for the U.S. Navy. To achieve this, the thesis explored several areas of virtual reality

technologies, and achieved the following results:

• The simulation is networked so that several users can interact in the same virtual
environment for training. Users see networked articulated humans and interact
with each other. Also the network allows users to hear sounds on non-sound
capable reality engine computers by playing sounds on remote sound capable
computers.

• The collision detection mechanism is enhanced to prevent the user from moving
through decks, bulkheads and other objects.

• Scripted training scenarios are created to both test and train the user. The
scenarios can be reviewed repeatedly until the user feels proficient in the subject
area.

• Sounds are added to increase the feeling of immersion. Sounds are heard by the
users to indicate events occurring, give instant feedback and instruct users about
the environment.

• Several training devices are incorporated into the simulation. These include a
hypertext window with sound to display information, scripted lessons which
teach the user navigation skills, and an articulated human to guide the participant
through the environment.

B. RECOMMENDATIONS FOR FUTURE WORK

There are still several areas which need to be implemented or enhanced before this

trainer is ready to be used by the fleet. They are listed in the order of significance.

1. Create a Naval Ship Model From Actual Ship Data

This thesis is limited in familiarization training until DC VET is simulating an actu-

al naval vessel. Since an actual naval vessel is too large to model without using CAD data,

59

a method to convert existing CAD data into a format which can be visualized is a necessity.

The solution is made more difficult by the fact that contractors use their own proprietary

CAD software to design ships. The navy needs to create a standard format for visualization

data and require that all CAD data delivered from contractors be implemented in that

format. Perhaps this could be a standard for NGCR (Next Generation Computer Resourc-

es) SPARWAR (Space And Naval Warfare Systems Command) to undertake in the near

future [NGCR95].

2. Jack® Motion Library

The implementation of the Jack® Motion Library should be linked to the NPSNET

Jack Motion Library to take advantage of the improvement and upgrades of Jack ML.

Currently, DC VET uses its own separate version with different articulation methods and

features. One standard would eliminate redundancy and add more functionality. The exist-

ing postures and motion for Jack are limited to soldier movements and need to be expanded

to include normal every day postures of humans. Addition hand motions, created in DC

VET for Jack, need to be developed and all Jack ML features unique to DC VET need to

be incorporated into NPSNET.

3. Networking Larger Virtual Environments

The existing network system handles the database and required number of partici-

pants quite well. However, the method used to transmit the database information cannot

be expanded to a significantly larger database, such as a model of an entire ship. To solve

this problem, additional PDU types, listed in Table 4, besides the entity state PDU need to

be incorporated as the complexity of DC VET grows. Additional testing needs to be done

to determine the best method to update a large-scale database with a large number of

networked participants.

60

4. Improved Interface and Input Devices

To maximize use of the HMD version of DC VET, a better interface must be imple-

mented. The existing configuration of the NPS Graphics and Video Laboratory HMD

makes it difficult for the user to examine objects which are "behind" his initial orientation;

this is most noticeable when the user attempts to reverse his path. In addition, it is difficult

for the user to interact with a three dimensional world using a two dimensional mouse

device. Perhaps a three dimensional input device, such as a 3-D mouse or data glove,

would allow the user to manipulate objects in a more realistic manner. This would allow

the user the capability to travel in a direction other than his view direction and greatly

improving the realism of DC VET. Also, the use of voice recognition, as a primary means

to start events, control articulated humans and learn about objects, would increase the ease

of interaction and possibly improve the rate of learning.

5. Dynamic Casualty Control Scenarios

There are currently only three casualties which can be simulated in DC VET, and

they can only occur at fixed locations in the ship model. Having such limited scenarios

makes it easy for the crew to spot only one or two indications and know exactly what the

drill is and how to fight it optimally. To make training more realistic, dynamic conditions

that change every scenario but maintain the desired training effect are essential. Variability

must be incorporated, otherwise the participants learn only how to combat just a specific

type of casualty and not the whole gambit.

6. Merge into NPSNET

The concepts in the design of this Damage Control Virtual Environment Trainer

can be incorporated in the Naval Postgraduate School's Networked Virtual World

(NPSNET). In its next phase, it is planned to have people and vehicles depart or board a

ship from the NPSNET terrain database. The fundamentals of walkthrough design imple-

mented in this project will be applied to buildings so soldiers can enter and move about in

them realistically as well. Using both the implementation of PVS and Collision Detection

61

within confined areas in NPSNET, a soldier will be capable of going into buildings in the

existing simulation. These modifications will add a new level of simulation training.

Soldiers can learn familiarization of specific buildings ahead of time, so that they can

maneuver quickly and smartly during a small arms battle. Much like a naval vessel,

soldiers can improve team interaction and learn the surroundings for future missions before

experiencing the real world.

7. Increased Data Display

Currently, when the user selects an object, only the name and function of the object

with background sounds are displayed. This capability should be expanded to display a

wide range of information, such as what system the object is in, what is its normal position,

what effect manipulating it will have on the ship, etc. In the case of complex systems, DC

VET could be capable of calling up and displaying the diagram of the system for the user

to immediately learn about how each object fits into the larger picture. Until virtual envi-

ronments are capable of displaying the more intrinsical details of the objects in the world,

the embedding of information, such as video clips, should be explored. With video clips,

detailed illustrations of equipment operation and implementation can be readily shown.

For example, the user can learn how to don an OBA or fix a damaged part on a Gas Turbine

Engine. Also, the use of icons and a transparent HUD (Heads up Display) can help the user

interact more easily within the environment and make the decision process easier.

8. Testing and Evaluation of Virtual Environment Trainers

DC VET was created to train sailors at sea, and needs to be scientifically verified

in that it can effectively train sailors. An objective evaluation, considering human factors

and recording empirical data, is required to prove if VE is a viable solution to training. The

Operations Research and System Management Departments of the Naval Postgraduate

School should create experiments which can measure the training efficiency of the simula-

tion.

62

9. More Realistic and Efficient Collision Detection

The existing method of using line segments for collision detection and picking

should be improved by a more efficient volume intersection algorithm. This would reduce

the amount of overhead involved in the simulation. Also, the algorithm should be modified

so that when the user hits an object he doesn't just stop, but instead simulates bouncing off

at the angle of reflection.

C. FINAL REMARKS

This thesis research created a prototype virtual reality shipboard trainer which can

be feasibly used as a trainer. In achieving this large task the project examined the construc-

tion of a large model to train with and built a simulation that is networkable to anyone with

an Internet connection. DC VET employed the basic concepts of efficiently rendering the

scene in real-time by using the methods of PVS and LOD. User interaction within the

simulation was improved by incorporating the means of collision detection to navigate real-

istically around the world and to manipulate objects. Training scenarios were created with

environmental effects (smoke and fire) for more realism. The design of an intuitive GUI

for use with a monitor and the HMD increased the feeling of immersion. Sounds have been

integrated to indicate events and instruct the user within the environment. The incorpora-

tion of the Jack Motion Library into DC VET adds more realism of human representation

in the virtual environment. To assist in navigation and training, an articulated human

guides the user through the ship model. The ability to train a sailor in familiarization of

simple tasks in damage control is feasible. The concepts here are transferable to other types

of training and are ready to be adopted.

63

64

APPENDIX A. USER'S GUIDE

This appendix is the user's guide for operating the DC VET (Damage Control

Virtual Environment Trainer) [KTNG95]. It explains starting and running the system and

discusses the interface options and various commands available to interact with the virtual

ship. The guide includes the combination of new and old DC VET versions.

A. STARTING DC VET

The DC VET can be run on a variety of SGI graphics platforms. During the

initialization process it determines the number of processors available on the platform and

configures the multi-processing mode of the application.

To start the DC VET, change to the directory in which the executable "walk" file is

located. The executable file "walk" is located in the "/workd/obyrne/OByrneThesis/code"

directory at the Naval Postgraduate School Graphics and Video Laboratory. By simply

typing "walk" followed by a return, the program begins execution of a non-networked,

standard monitor display DC VET.

To network DC VET or direct the visual output to a head-mounted display,

command line options are used following the "walk" command. See Table A-l for a quick

reference of command line options. To join an exercise in progress with other

Line
Command

Option

-h Output to HMD

-n Network Simulation

-s Play sounds locally

-z Network Observer Mode

Table A-l: Command Line Options

workstations, the -n command line option is required. To observe a networked simulation

but not participate, -z command line option is used. If directing the visual output to a head-

65

mounted display, the -h command line option is required. To play sounds locally, use the

-s command line option.

The program takes approximately three minutes to complete the initialization

phase. During the first portion of this period, the models and textures used for the

simulation are loaded. Once loaded, a title screen consisting of the title of the project and

its authors is displayed on the screen until the application is finished initializing

(approximately twenty seconds). Following application initialization, the textures loaded

earlier are downloaded into random access memory in order that they can be quickly

accessed when needed. The textures are displayed on the screen as they are being

downloaded. Once the texture download is completed the application begins and places the

user in the Combat Information Center.

B. PROGRAM TERMINATION

There are two methods to exit the DC VET. One method is to depress 'Esc', or the

shell interrupt key, typically 'Cntrl-C. The other method is to select the quit menu button

on the graphical user interface (GUI). Both of these options completely shuts down the

system including any processes spawned during the application. (Note: the GUI option is

not available when wearing the HMD)

C. SCREEN LAYOUT

The standard screen layout takes up the entire screen and includes the virtual scene

display, graphical user interface (GUI) and deck overview. A pop-up window, which

displays information about objects in the virtual ship, is displayed when objects are selected

with the mouse. These displays and their relative locations on the screen are shown in

Figure A-l and Figure A-2.

The virtual scene display takes up ninety percent of the screen. The overview

display and GUI can be turned off to allow the full screen to be taken up by the virtual scene

display by either depressing 'FT on the keyboard or selecting "GUI off on the GUI. To

re-enable the GUI and deck overview display, 'FT must be depressed on the keyboard.

66

1. Deck Overview

The deck overview channel is located on the lower right hand portion of the screen

as shown in Figures A-l and A-2. It provides an overhead view of the deck on which the

user is presently located. The deck lay-out is graphically displayed in two dimensions

showing the locations of ladders, bulkheads, doorways and passageways. A black position

cursor shows the user's position in the virtual ship and moves as the user moves along the

deck in the virtual environment.

POP-UP
INFORMATION

DISPLAY

SCENE
DISPLAY

GUI MENU BUTTONS DECK
OVERVIEW

Figure A-l: Monitor Display

2. Pop-Up Data Display Window

When the user selects an object with the mouse, a pop-up window containing

information about the object selected is displayed in the upper right hand corner of the

67

TO*
s
re

a
o
<i w
H
o
©
3
o
re

ST

if f3fo-V«ä Sft«

MM3
Sv5?J*&&:,&i

•;fK

l-it: J1111B *»*-

i'*

k --jmrn

m

68

screen as shown in Figure A-2. The display stays on the screen until the mouse buttons are

released. Also, when sounds are activated the user can hear an audio sound-bite about the

object in question. (Not all objects have sounds associated with them.)

3. Graphical User Interface

The graphical user interface (GUI) provides the user with an "easy to use" menu

interface to perform an assortment of functions. The GUI is located on the lower left corner

of the screen as shown in Figure A-l. A representation of the GUI is displayed in Figure-

A-2.

D. OPERATION

There are two DC VET operating modes. The first mode, "walk", which is the

default mode, simulates naturally walking through the virtual ship. Collision detection is

enabled meaning that the user cannot walk through objects. The other mode is "fly" which

enables the user to move through the ship as if he was flying. In "fly" mode, collision

detection is disabled allowing the user to fly through objects. These modes are changeable

by the "Mode" menu toggle button on the GUI.

1. Mouse Operations

Natural walking ("walk" mode) or flying ("fly" mode) is simulated with the aid of

a mouse. By depressing either the right mouse key (forward motion) or the left mouse key

(reverse motion), the user gains speed and moves through the environment in the direction

the user is looking. The middle mouse button causes the viewer to stop.

The direction the user is looking is also determined by the mouse. The view

direction changes in the relative direction that the mouse cursor is, positioned from the

center of the screen. For example, the farther to the right of center the mouse cursor is the

quicker the individual will turn to his right. The range of motion in the vertical direction is

capped to straight up (+90 degrees) and straight down (-90 degrees) when in the "walk"

69

mode. There is a one inch box in the middle of the screen referred to as the "dead zone" in

which the mouse cursor, if inside this area, does not cause the view direction to change.

The mouse is also used to select objects in the virtual ship for either object data

display, manipulation or movement. To select an object, the user places the mouse cursor

on an object and depresses the middle and either the left or right mouse button at the same

time. If the object is not a movable object, a pop-up window is displayed in the upper right

hand corner of the screen as shown in Figure A-2 for as long as the mouse buttons are

pressed down.

a. Objects Which Move

All doors throughout the ship and cabinet covers in the Radar Room can be

opened and closed. To open a door, the right and middle mouse button must be depressed

at the same time with the mouse pointing to the door. The door rotates in its open direction

until it reaches its maximum rotation of ninety degrees or until the mouse buttons are

released. To close the door, the left and middle mouse buttons are depressed at the same

time and the opposite motion occurs.

Two valves located in the Engineroom Lower Level are both capable of

being opened and closed. The operation of valves is similar to the operation of doors as far

as the method used to open and shut the valves. When opening a valve the valve stem rises

and the valve hand-wheel rotates in a counter-clockwise motion; the opposite occurs when

shutting the valve.

A vari-nozzle, when picked, is moved from its storage location in

Engineroom Lower Level to directly in front of the user's view at belt level. The vari-

nozzle can be opened and shut once the user has the nozzle in front of him by further

clicking the mouse on the nozzle. The nozzle is moved back to its storage location by

depressing 'p' or T' on the keyboard.

70

b. Objects Which Can Be Manipulated

A ventilation fan controller and halon activation system controller in the

Engineroom Lower Level are capable of being turned on and off by the mouse. To

manipulate the controllers, the controller button must be picked as described above. Mouse

control functions are provided in Table A-2.

Mouse Controls

Action Left Middle Right

Move Forward X

Stop X

Move Backwards X

Close a Door/Valve X X

Open a Door/Valve X X

Pick Up a Fire Nozzle X X

Start/Stop Fire Nozzle Water X X

Start Ventilation System X X

Start Halon Hooding System, X X

Display/Hear Object Data X X

Start/Stop Jack Tour Guide X X

Table A-2: Mouse Button Interface and Functions

2. Graphical User Interface (GUI)

The GUI, displayed in Figure A-2, provides the following functions, starting in the

upper right corner and proceeding clockwise:

a. Quit Button

The quit button causes the user to leave the application. Depressing the

'Esc' key also accomplishes the same function.

71

QUIT XYZHPR WALK

GUI OFF TRANSLATE TO CIC OK

HEIGHT OF EYE

RESET SHOW PATH TO OPS OK

Figure A-3: Graphical User Interface

b. User's Position Display

The user's location in three space is displayed here as X, Y, and Z

coordinates. Also, the user's heading, pitch and roll are also displayed.

c. Traversal Mode Selection

The two modes of operation, "fly" and "walk", which were previously

discussed, are controlled by this toggle menu button.

d. Height of Eye Control

The height of eye control slider enables the user to vary the eye point height

above the deck while in the "walk" mode in order that objects which are close to the deck

or up high can be viewed at a closer distance. The user can vary height between 0.5 - 2.5

meters.

e. Path Planning Selection

A path planning tool is provided which takes the user along a path from his

present location to a location of his choosing via the optimal route at normal walking speed.

The locations which can be selected include CIC (Combat Information Center), the Radar

72

Room, the Operations' Office, DCC (Damage Control Central), the Hull Technician's

Shop and the ladder to the engineroom. The user selects his destination by clicking the

button titled "Show path to: <destination>." As he clicks it, a different destination is

displayed. When the desired destination is displayed, the user selects the "OK" button next

to it and begins travelling to that destination. At this point, the menu button changes to

"Stop walking to: <destination>", and if the user selects it, he is no longer transiting to the

destination and regains control of his own motion.

f. Reset Button

This button allows the user to reset the application to its original state. All

objects are returned to their initial position, all casualties are terminated, any damage

caused by casualties is repaired, valves are opened and the atmosphere is cleared. (Note:

this change in state is not networked and will cause networked simulations to have different

scenes.)

g. Toggle GUI Button

The "GUI-Off' menu button turns the GUI and the deck overview off

providing more screen display for the scene. The GUI and deck overview can be returned

to the screen display by depressing 'FT on the keyboard.

h. Translation Selection

To allow the user the ability to quickly "jump" from one location to another

in the virtual ship, a translate menu button is provided. Preset anchor points to key

locations are embedded in the software code. These locations include CIC, DCC,

Engineroom Lower Level, Bridge and the Vehicle Loading Deck.

3. Keyboard Operations

The keyboard is primarily used to initiate casualties in the virtual environment. It

also provides another method to accomplish some of the functions which are provided by

the GUI. The keyboard inputs and their functions are listed in Table A-3.

73

Functions Keyboard Input I

Display GUI and Deck Overview
*F1'

Turn On/Off Local Sound Effects 'F2'

Turn On/Off Local & Global Sounds 'F3'

Exit Program 'ESC

Toggle CPU and Graphics Statistics 'D' or 'd'

Initiate Fire Casualty Sequence 'F' or 'f

Place Fire Nozzle Back to Fire Station 'P' or 'p'

Toggle Texture Display T' or 't'

Toggle Wire Frame Display 'W or 'w'

Jump to Bridge Way Point Shift 'B' or 'b'

Jump to CIC Way Point Shift 'C or 'c'

Jump to Engineroom Way Point Shift 'E' or 'e'

Start/Stop Demonstration - Jack as Guide 'J' or 'j'

Start/Stop Demonstration (Camera Follows) Shift 'J' or 'j'

Start/Stop Demonstration (Wait for User) 'FT or 'h'

Restart Demonstration/Lesson Shift 'K' or 'k'

Change to New Demonstration/Lesson 'U or '1'

Jump to Vehicle Loading Dock Way Point Shift 'P' or 'p'

Save RGB Image of Display Control 'PrintScreen'

Move Forward an Event During Demonstration Shift'+'

Move Backward an Event During Demonstration Shift'-'

Table A-3: Keyboard Interface and Functions

4. Head-mounted Display Operation

The program is configured to run with a head-mounted display (HMD) if the -h

command line option, discussed previously, is used. The configuration changes the window

size and graphics video format to be compatible with the HMD requirements. "Walk"

mode is the only mode of operation available when wearing an HMD. The GUI, deck

overview and pop-up window are also not displayed with the HMD.

74

Walking through the virtual ship when wearing an HMD is very similar to the

walking method discussed previously. The only difference lies in the method in which the

view direction is determined when wearing an HMD. The HMD's tracking device

translates the HMD's direction of view to an appropriate view direction in the virtual

environment. Therefore, to walk around the virtual ship, the user physically looks in the

desired direction and depresses the appropriate mouse buttons.

Movable objects such as doors, valves, vari-nozzle and manipulated objects such as

fan and halon controllers can still be picked while wearing an HMD. The method is similar

to the mouse picking method discussed previously, however, instead of selecting objects

with the mouse pointer, objects are selected by placing the cross-hairs in the center of the

HMD view on the object.

E. CASUALTY SCENARIOS

1. Fire Casualty Sequence

By depressing either the 'f' or 'F' keys on the keyboard, the main space fire casualty

sequence commences with a JP-5 fuel oil leak at a piping elbow joint in the lower level of

the engineroom. The fuel oil leak develops into an engineroom fire if the oil leak is not

stopped within twenty seconds by shutting an isolation valve upstream of the leak. The fire

breaks out with a radius of two meters and, if no extinguishing agent is applied, grows with

each frame cycle until it reaches a maximum radius of 3.5 meters.

The fire can be extinguished by either obtaining and opening a vari-nozzle to apply

high velocity spray to the base of the fire or activating the halon fire extinguishing system.

If using the vari-nozzle to apply the extinguishing agent, the firefighter must be within six

meters of the fire and apply the high velocity spray within five degrees of either side of the

fire's origin. The fire decreases in radius at a rate commensurate with the amount of time

the extinguishing agent is applied. If networked and more than one individual is putting

out the fire, the fire goes down more quickly. If the firefighter does not keep the high

velocity spray within the above constraints, the fire will grow as before. If instead, the

75

firefighter activates the halon fire suppression system to extinguish the fire, the fire

responds as in reality and decreases at a quicker rate than if water is applied.

Once the fire is initiated, the environment in the main space begins to fill up with

smoke. Gray-black smoke incrementally fills the compartment for as long as the fire

continues to burn causing a reduction in visibility until a minimum visibility of five meters

is reached. Once the fire is out, the smoke can be cleared by turning on ventilation fans.

2. Steam Leak Casualty

By depressing either the 's' or 'S' key on the keyboard, a steam leak develops at a

union on the deaerating feed tank (DFT) outlet piping just below the DFT feed isolation

valve. The size of the steam leak changes if the DFT feed isolation valve is manipulated.

As the valve handwheel is closed, the leak reduces in proportion to the percentage the valve

is opened. Once the DFT feed isolation valve is fully shut and ventilation fans are

activated, the steam can be dissipated.

The steam leak also causes the atmosphere to become obscured as in the fire

casualty discussed above. The difference is that the color of the obscurity for steam is

white-gray, compared to the grey-black of the fire.

F. TRAINING LESSONS

1. Operating Lessons

There are three modes of operation to choose from with scripted training lessons.

In all the modes Jack acts as a guide or instructor who leads the user through the ship. In

the first mode, Jack moves about the ship, as scripted in the lesson, on his own until the

script is completed. The user can follow Jack or interact with the environment, but Jack

will not wait. To start and pause this demonstration mode, depress either the 'j' or T key

on the keyboard. The second mode is the same as the first except Jack will wait for the user

to follow him. If the user gets more than four meters away, Jack stops and waits. This

allows the user to follow the Jack guide and pause while learning what other items of

76

importance. To start and pause this wait and demonstrate mode, depress the shift and either

'j' or T keys on the keyboard. The last mode is a view mode where the scene changes and

follows Jack through the lesson. The user does not interact with the environment in this

mode, but just watches events occur. This is much like a video presentation. To start and

pause this video demonstrational mode, depress either the 'k' or 'K' key on the keyboard.

The user can switch from any of the three demonstration modes at anytime by

depressing the key associated with the mode twice. To pause the demonstration, depress

any of the three keys depressed which started the demonstration. To continue where the

demonstration was paused, just depress the key associated with the desired demonstration

mode. To restart a demonstration, from the beginning, depress the shift and either the 'k'

or 'K' keys on the keyboard and Jack guide will be moved to the original location and start

the lesson over. To move ahead during the demonstration or to fast-forward through

events, depress the shift and '+' keys the respective number of times. To repeat an event

or go back several events, depress the shift and '-' keys the respective number of times.

There can be up to five different scripted training lessons ready for execution with

DC VET. These lessons are stored in a data file which is loaded into the computer memory

just before execution. The default scripted lesson ready for presentation is the file

"scriptData0.dat". To change to another prepared scripted lesson depress the either the T

or 'L' keys on the keyboard. This will cycle the lessons available up to the last, lesson four

(index is 0 to 4), and after four, it will repeat over with lesson zero.

2. Creating Scripted Training Lessons

A data file is utilized to read the scripted lessons created by the user. No re-

compiling of the application is necessary to swap lessons. DC VET is capable of scanning

for up to five different lessons which are stored in files "scriptData0.dat" through

"scriptData4.dat". These files are located in "/workd/obyrne/OByrneThesis/code/models"

directory. Using any standard text editor, actions are written or edited using the format

provided in Table A-4. An example data file is provided in Figure A-4. Information to

77

move Jack through the environment and have him perform actions listed in Table A-5 are

recorded in these files. These index numbers are also located in "blueJack.h" file in the

"workd/obyrne/OByrneThesis/code" directory.

The Reference Listing for Each Column's Data

CU cu cu
■M *-i

03 03 03
B B B

-o TJ T3
M M M
© © o
© © ©
u u U

CU cu !_ X X X
s-
eu

£
s z

T3
B
03

E
£ o

0)

e

cu
■*->

03
S
-a
M

0)

03
B

-3
B
S*
B
H

cu

"3

s
©
CU
B

"3

CU

£
s z
CU

B
_©

03
cu o
-

B
#©
%->
cs
u
©

1-9

a
_©

03
u o
™

>
CM
©
B

.©
■■»

CM
©
B

_©
"•M

tu
cu
S3
CU
B
W

u
CU

-M

o o
U

o
o
U
5*

©
© u

SI

M
B

-3
03

CM
O
0)

■M
cu

u
B
CU
s-

CM
CU

cu • M

en

CU

1/3

CU

>
</)

CU
CU
M

s
C/3

03
>

3
CO

cu
in

s-
eu

CO

c
© • M

-M

B B cu
Cfl

03

H
u

03
M
CU

03
s.
cu

03
M
CU

03
M
CU

03
M
CU

s
4»

-^ 03
cu

03
u

03
B

CD
cu

CU
•^5

cu
«5

B s £ E E E £
> 3 o

1-1
o © at

o s ©
GO

05 03 u 03 u 03
U

03 u

Table A-4: Script Data File Format

78

Scripted Jack Events

Event Number Event Requested

0 Load Next Event into the Ready Queue

l Move to Location

2 Pivot head to Elevation

3 Go Up/Down Stairs

4 Open/Close Doors

5 Open/Close Valves

6 Perform Hand Signals

7 Start Fuel Oil Leak Then Fire Casualty

8 Pick Up/Place Down Nozzle - Turn Water On/Off

9 Start Steam Leak Casualty

10 Activate Ventilation

11 Activate Halon Fire Suppression

12 Play Sound-bites

13 Jump to Other Sections of the Ship

14 Wait/Pause Jack at Current Location

15 Display Hyper Text Box

16 Exit Scripted Lesson

17 Restart Lesson From the Beginning

Table A-5: Autonomous Jack Instructions

When designing the scripted lesson, just move about the ship as the Jack guide and

record the events that are to happen. Include the X, Y, Z coordinates and the heading and

pitch desired at that point. To determine a camera view, the easiest process is to watch Jack

move once a scripted lesson is recorded to the file. Play the lesson back and look through

each event for where the optimal location for observing Jack is. Record those coordinates

as well and play them back. The user does not have to quit DC VET, but simply pause the

scene and open up a text editor to record the changes. When the lesson is switched or the

79

0 1 182.0 -1.4 21.39 090.0 0.0 0.2 000 187.3 -0.4 23.1 090.0 -12.0
1 2 182.0 -1.4 21.39 270.0 0.0 25.0 0031 187.3 -0.4 23.1 090.0 -12.0
2 1 186.5 -0.5 21.39 272.0 0.0 0.3 000 187.3 -0.4 23.1 090.0 -12.0
3 4 186.5 -0.5 21.39 272.0 0.0 3.0 5 10 182.3 -2.2 23.1 291.0 -13.5
4 1 188.5 0.0 21.39 277.0 -10.0 0.4 000 182.3 -2.2 23.1 291.0 -13.5
5 2 188.5 0.0 21.39 352.0 80.0 25.0 000 182.3 -2.2 23.1 291.0 -13.5
6 1 189.0 5.9 21.39 352.0 10.0 0.4 000 191.2 -5.4 23.1 014.0 -9.0
7 1 191.0 -1.1 21.39 180.0- 25.0 0.3 000 191.2 -5.4 23.1 014.0 -9.0
8 3 191.0 -3.5 18.05 180.0- 30.0 0.8 0 0 25 1912 -10.4 19.8 011.0 -4.5
9 1 188.0 -3.5 18.05 000.0 0.0 0.3 000 187.1 2.6 19.8 011.0 -4.5
10 2 188.0 -3.5 18.05 120.0 10.0 15.0 000 184.2 -6.2 19.8 304.7 -6.0

Figure A-4: Example "scriptData.dat" File Contents

same lesson is restarted, the "scriptData.dat" file is re-read into memory. This allows ease

of creating scripted files and is less time consuming for development. Note there is a limit

of 50 events per scripted lesson for a total of 250 events. If the user needs more than this

to conduct training, DC VET can easily be modified to accommodate more scripted lesson

files or increase the number of events for each lesson.

G. SOUND SERVER

1. Staring the Sound Server Program

The executable file for the sound server program is located in the "Avorkd/obyrne/

OByrneThesis/code/SoundServer" directory at the Naval Postgraduate School Graphics

and Video Laboratory. By simply typing "soundServer" followed by a return, the program

begins execution of a networked receiver which plays sounds requests from DC VET

networked stations. When the program is ready to play sounds the user will hear, "Sound

Server Activated". This application is a simple C program to allow Indy and Indigo

systems in the laboratory, that do not have enough memory, to run a sound server program

with a graphical interface. A second version of the sound server has a Motif GUI interface

for simple operations. With the GUI version you can temporarily turn off sounds or play

sounds from a particular host. The GUI sound server program is executed by typing

"GUIsoundServer" at the command line.

2. Networking Sounds

To network a user's simulation to the sound server program, the user must be in the

network mode. When operating in the network mode, the Entity State PDU carries the

index for sound files to be played, if any, and the sound server extracts the index from the

PDU and plays the corresponding sound file.

3. Local Sound Capability

If the system running DC VET is sound capable, sounds do not have to be sent to a

sound server to be heard. The user at his local station can play sounds created by the

application. To play sounds locally, the -s option is required after typing "walk" at the

command line. This option will not transmit sounds to a sound server. When using the

network mode, the user will have the sound events sent to the sound server and still can

hear their sounds on their own system.

4. Features

The sound server can read PDU packets from all the stations on the networked

simulation. It has to discriminate sound requests and not play the same exact sounds at the

same time. If this happened a reverberated sound effect occurs and the sound is not clearly

audible. A queue is used to store sound request to ensure the same sound is not played at

the same time. The queue is also used to ensure that a sound request is not lost. The typical

SGI sound capable computer can play four sounds simultaneously. Beyond that the sound

server waits and then plays the request. If the sound server is overloaded, some sounds may

not occur in real time. It is also possible to overflow the queue and lose sounds requests.

However, this has not occurred in practice since the buffer is large enough to handle a

robust training simulation.

The user also has the choice whether not to play his sounds locally or send them

over the network. There are two options for sounds, local and global. Local sounds are

sound effects such as bumping into a wall or opening a door. Global sounds are

announcements over the IMC (also known as PA, Public Announcement) like fire in the

engineroom or the sound of an explosion. The user can turn on/off local sounds by

depressing the 'F2' key and global sounds with the 'F3' key. By default these sounds are

active when the simulation starts.

5. Sound Files

Sounds are recorded and saved to the "/workd/obyrne/OByrneThesis/code/sounds"

directory. The sound server program is capable of playing up to 45 different sound

requests. These .aiff or .aifc sound files are loaded into the memory of the sound server

computer. This allows real time play back of sounds corresponding to events and requests

from the given simulation. The names and paths for the sounds to be loaded are recorded

in a data file called "sounds.dat". This is also located in the "SoundServer" directory.

Associated names for sounds such as GQ for the general quarters sound or MFP1A for a

definition of a main feed pump are listed in the file "sounds.h". This file can be found in

the "/workd/obyrne/OByrneThesis/code" directory. For writing scripts, use the index

number corresponding to the sound file from "sounds.dat". An example of "sounds.dat"

is provided as Figure A-5. To edit sounds and save them to an .aiff or .aifc file, use the

SGI "soundeditor" program, "soundeditor" is a GUI program that is fairly intuitive to use

and allows for easy mixing or splicing of sounds.

82

0 /workd/obyrne/OByrneThesis/code/sounds/NPSsounds/sounds/ak47.aiff
1 /workd/obyrne/OByrneThesis/code/sounds/NPSsounds/sounds/aaahhhhh.aiff
2 /workd/obyme/OByrneThesis/code/sounds/bump.aiff
3 /workd/obyrne/OByrneThesis/code/sounds/NPSsounds/sounds/explosion 1 .aiff
4 /workd/obyrne/OByrneThesis/code/sounds/NPSsounds/sounds/explosion2.aiff
5 /workd/obyrne/OByrneThesis/code/sounds/stairs.aifc
6 /workd/obyrne/OByrneThesis/code/sounds/NPSsounds/sounds/soundServer.aiff
7 /workd/obyrne/OByrneThesis/code/sounds/MFPlA.aifc
8 /workd/obyrne/OByrneThesis/code/sounds/halon.aiff
9 /workd/obyme/OByrneThesis/code/sounds/GQ.aiff
10 /workd/obyrne/OByrneThesis/code/sounds/MFPlA.aiff
11 through 41
42 /workd/obyrne/OByrneThesis/code/sounds/follow_me.aiff
43 /workd/obyrne/OByrneThesis/code/sounds/vent_on.aiff
44 /workd/obyrne/OByrneThesis/code/sounds/water_spray.aiff

Figure A-5: Example "sounds.dat" File Contents

83

LIST OF REFERENCES

[ADAM95] Adams, Nina and Lang, Laura, "VR Improves Motorola Training Program",
AI Expert, Volume 10, Number 5, May 1995, pp 13.

[AIRE90] Airey, John M., Rohlf, John H. and Brooks, Fredrick P. Jr., "Towards Image
Realism with Interactive Update Rates in Complex Virtual Building
Environments", Department of Computer Science, University of North
Carolina Chapel Hill, Computer Graphics, Volume. 24, Number 2, March
1990, pp 41.

[BR0092] Brooks, Frederick P. Jr., "Final Technical Report - Walkthrough Project
June 1992 to Computer and Information Science and Engineering National
Science Foundation", UNC Technical Report 92-026, June 1992.

[BUK095] Bukowski, Richard W. and Sequin, Carlo H., "Object Associations: A
Simple and Practical Approach to Virtual 3D Manipulation", Proceedings
of the 1995 Symposium on Interactive 3D Graphics, April 1995, pp 131-
138.

[CATM84] Catmull, Ed, Carpenter, Loren, and Cook, Rob, "Private and Public
Communications", 1984.

[DOD92] Department of Defense, "Defense Modeling and Simulation Initiative",
Washington D.C., May 1992.

[ERTE95] Ertel, Lawrence R., "Birth of a New Machine: Making of Impact", IRIS
Universe, Number 32, 1995, pp 16-23.

[FUNK94] Funkhouser, Thomas A., Khorramabadi, Delnaz, Sequin, Carlo H., and
Teller, Seth J., "UCB System for Interactive Visualization of Large
Architectural Models", April 13th, 1994.

[GRAN94A] Granieri, John P., and Badler, Norman L, "Simulating Humans in VR",
Center for Human Modeling and Simulation University of Pennsylvania,
October 12th, 1994.

85

[GRAN94B] Granieri, John P., "Jack/TTES: A System for Production and Real-time
Playback of Human Figure Motion in a DIS Environment", Center for
Human Modeling and Simulation University of Pennsylvania, August 5th,
1994.

[IST93] Institute for Simulation and Training, "Communication Architecture for
Distributed Interactive Simulations (CADIS)", Final Draft Proposed IEEE
Standard, IST-CR-93-20, University of Central Florida, June 28th, 1993.

[KING95] King, Tony E., and McDowell Perry L., "A Networked Virtual
Environment For Shipboard Training", Master's Thesis, Naval
Postgraduate School, March 1995.

[LAST95] Lastra, Anselmo, Molnar, Steven, Olano, Marc, and Wang, Yulan, "Real-
Time Programmable Shading," Proceedings of the 1995 Symposium on
Interactive 3D Graphics, April 1995, pp 59-66.

[LOCK94] Locke, John, "An Introduction to the Internet Networking Environment and
SIMNET/DIS", Computer Science Department, Naval Postgraduate
School, October 24th, 1994.

[LUEB95] Luebke, David and Georges, Chris, "Portals and Mirrors: Simple, Fast
Evaluation of Potentially Visible Sets", Proceedings of the 1995
Symposium on Interactive 3D Graphics, April 1995, pp 105-106.

[MACE95] Macedonia, Michael, R., Brutzman Donald P., Zyda, Michael J., Pratt,
David R.,Barham Paul T., Falby John S., and Locke, John, "NPSNET: A
Muti-Player 3D Virtual Environment Over The Internet," Proceeding of the
1995 Symposium on Interactive 3D Graphics, April 1995, pp 93-94.

[NATI94] National Academy of Sciences National Research Council Committee on
Virtual Reality Research and Development, "Report on the State-of-the-Art
in Computer Technology for the Generation of Virtual Environments",
January 1994.

[NCGR95] SPAWAR "NGCR Acquisition Guide", Next Generation Computer
Resources Document No. AST 001 Ver. 0.11, March 30th, 1995.

[NEIR92] Cruz-Neira, Carolina, Sandin, Daniel J., DeFanti Thomas A., Kenyon,
Robert V., Hart, John C, "The Cave: Audio-Visual Experience Automatic
Virtual Environment", Communications of ACM, Volume 35, Number 6,
June 1992.

[NRL95] Naval Research Laboratory, "Virtual Environments for Shipboard Damage
Control and Firefighting Research", http://nrl.com.damageControl, 1995.

[ROHL94] Rohlf, John and Helman, James, "IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics", 1994 SIGGRAPH
Course Notes, May 1994.

[TELL91] Teller, Seth J. and Sequin, Carlo H., "Visibility Preprocessing For
Interactive Walkthroughs", Computer Graphics, Volume 25, Number 4,
July 1991, pp 61.

[ZESW93] Zeskwitz, Steven R.,"NPSNET: Integration of Distributed Interactive
Simulation (DIS) Protocol for Communication Architecture and
Information Exchange", Master's Thesis, Naval Postgraduate School,
January 1994.

87

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, CA 93943-1501

3. Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

4. John S. Falby, Code CS/FA 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

5. Dr Michael J. Zyda, Code CS/ZK 10
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. LT James E. O'Byrne 2
149 Beach 92nd Street
Rockaway Beach, NY 11693

7. Dr Bernard Ulozas 2
Naval Personnel Research and Development Center
53335 Ryne Road
San Diego, CA 92152-7250

